BIOLOGI ONLINE

blog pendidikan biologi

MENJELASKAN DAN MENGANALISIS PERAN BIOTEKNOLOGI SERTA IMPLIKASI HASIL-HASIL BIOTEKNOLOGI PADA SALINGTEMAS

A.  PRODUK-PRODUK BIOTEKNOLOGI

1. Bidang Industri Kimia

Pelarut organik yang biasa dihasilkan melalui proses fermentasi, antara lain etanol, aseton, butanol dan isopropanol. Etanol diperoleh dengan cara fermentasi gula oleh khamir (ragi) dalam keadaan anaerobik. Bahan baku gula yang murah biasanya digunakan tetes (molase) yaitu ampas tebu. Aseton dan butanol biasanya menggunakan bahan baku pati dalam keadaan anaerobik pada suhu 300C–320C selama 40 – 80 jam. Mikroba yang berperan contohnya Clostridium acetobutylinum. Butanol banyak digunakan dalam pembuatan Plastik dan minyak rem. Asam-asam organik penting hasil fermentasi contohnya adalah asam asetat, asam laktat, asam sitrat, dan glukonat. Asam asetat (asam cuka) berasal dari fermentasi etanol secara aerobik oleh bakteri Acetobacter aceti. Asam laktat merupakan bahan yang rasa dan baunya sedap dan mempunyai daya pengawet. Asam ini digunakan sebagai penyedap minuman ringan, pengharum, sari buah, selai dan sirup, juga dalam pengalengan buah dan ikan. Bahan yang difermentasi biasanya gula, dengan bantuan Lactobacillus Sp. Asam sitrat juga diperoleh dari fermentasi gula, dengan bantuan Aspergillus niger atau Aspergillus wentii. Asam sitrat banyak digunakan dalam pembuatan minuman, selai, manisan, dan sirup.

2. Bidang Farmasi dan Kesehatan

Tidak perlu diragukan lagi, bahwa kemajuan bioteknologi dapat meningkatkan upaya pemeliharaan kesehatan masyarakat. Penerapan industri biologi dalam bidang kesehatan mengalami kemajuan yang mengagumkan. Berbagai aspek biologi telah dijadikan dasar pembuatan rancangan-rancangan untuk memerangi penyakit seperti produksi berbagai obat, antibiotik, vaksin, hormon, enzim, dan antibodi.

 

 

a. Antibiotik

Antibiotik adalah senyawa kimia yang dihasilkan oleh mikroorganisme. Senyawa ini mampu membunuh atau menghambat pertumbuhan mikroorganisme lain. Antibiotik digolongkan menjadi empat kelas utama, yaitu penisilin, tetrasiklin, sefalosporin, dan eritromisin. Penisilin dapat menghentikan infeksi oleh bakteri-bakteri yang umumnya sangat berbahaya. Sefalosporin adalah senyawa lain yang dapat membunuh bakteri yang resisten (tahan) terhadap penisilin. Sefalosporin, misalnya digunakan untuk melawan Staphylococcus (bakteri penyebab pneumonia).

Streptomisin bekerja dengan mencegah pembentukan protein pada bakteri. Antibiotik yang dihasilkan oleh jamur Streptomyces griseus ini ditemukan oleh Selman Waksman (1944). Streptomisin digunakan untuk mengobati tuberculosis (TBC). Antibiotik-antibiotik di atas dapat mengakibatkan sifat resistensi (tahan) sehingga mendorong para ahli untuk melakukan pencarian antibiotik baru. Rekayasa genetik dapat digunakan untuk menciptakan antibiotik yang termodifikasi. Sebuah teknik yang dikenal sebagai “Fusi Sel” member harapan besar untuk mendapatkan antibiotik dalam jumlah besar bahkan yang lebih baik.

b. Antibodi

Tubuh manusia dan hewan terus-menerus menghadapi serangan virus, bakteri, jamur, dan senyawa kimia yang terdapat dalam lingkungan. Untuk mengatasi serangan tersebut, tubuh membutuhkan golongan protein yang disebut antibodi. Antibodi tersebut dibentuk oleh sel khusus bernama limfosit B yang terdapat dalam limpa, darah, dan kelenjar limfe. Antibodi bersifat mengenali substansi asing (disebut antigen) dan menyerangnya atau menghancurkannya. Bagaimana jika tubuh diserang antigen secara berlebihan, sementara tubuh mempunyai kemampuan yang terbatas dalam menghasilkan antibodi?

Suatu teknik pembentukan antibodi telah dikembangkan berkat kemajuan bioteknologi. Para pakar bioteknologi telah dapat mengembangkan produksi antibodi secara besar-besaran. Sebuah antibodi yang disebut antibody monoklonal telah mampu mengatasi berbagai penyakit pada manusia, mulai dari penyakit kanker dan kegagalan ginjal sampai dengan penyakit infeksi oleh virus atau bakteri. Antibodi monoklonal juga meningkatkan keberhasilan pencangkokan organ. Antibodi monoklonal adalah kelompok antibodi yang identik dengan bentuk lekuk yang sama sehingga hanya mengenali antigen yang sama (perhatikan gambar di bawah ini).

 

 

Gambar. Antibodi (juga dinamakan imunoglobulin merupakan protein berbentuk Y. Di ujung setiap tangan terdapat dua kantung identik, bentuknya bervariasi dari satu molekul antibodi ke molekul antibody lainnya. Apabila antibodi berdekatan dengan antigen yang bentuknya sesuai dengan kantung, antibodi dan antigen akan saling berkaitan
Sumber: Biotechnology in School

 

 

 

 

 

 

 

 

 

George Kohler dan Cesar Milstein, berhasil menemukan cara membuat antibodi monoklonal pada penyakit kanker, penemuan ini memberikan harapan besar dalam pengobatan kanker. Dengan menggabungkan kemampuan sel B dalam membuat antibodi dan sifat sel kanker yang dapat dikatakan terus-menerus hidup pada lingkungan luar, dapat diproduksi sejumlah antibodi monoklonal. Cara ini dilakukan dengan memfusikan sel B dengan sel kanker sehingga dihasilkan sel hibrid (Teknologi hibridoma) yang memiliki sifat kedua sel tersebut, yaitu sel yang dapat membuat antibody dan hidup dalam jangka waktu yang lama. Untuk lebih jelasnya pelajari bagan berikut ini!

 

Gambar: Pembuatan Antibodi monoklonal

 

 

 

 

 

 

 

Produksi sel hibridoma yang membuat antibodi monoklonal mengenali dan melekat pada molekul antigen. Tikus diinjeksi dengan campuran bahan yang mengandung sejumlah kecil antigen. Beberapa hari setelah injeksi itu limpa tikus dipindahkan dan sel-sel B-nya, beberapa di antaranya akan membuat antibodi mengenali antigen, dibiarkan berfusi dengan sel myeloma kanker untuk menghasilkan hibridoma. Klon hibridoma dipisahkan satu dengan lainnya dan diuji untuk melihat mana yang menghasilkan antibody monoklonal.

c. Vaksin

Pada tahun 1067 lebih dari sepuluh juta penduduk dunia terserang penyakit cacar, dan penyakit ini bersifat endemik bagi lebih dari 30 negara. Sekarang penyakit ini telah dapat diatasi sejak program vaksinasi masal WHO dilakukan.Vaksinasi juga telah dilakukan untuk memerangi penyakit rabies, dipteri, tetanus, batuk kering, radang sum-sum tulang belakang, radang paruparu, radang selaput otak, TBC, polio, hepatitis, dan lain-lain. Meskipun demikian, penyakit akibat infeksi virus masih banyak melanda masyarakat, hal ini disebabkan oleh belum tersedianya vaksin yang efektif dan harganya murah.

Metode baku pembuatan vaksin adalah membiakkan mikroba pathogen (misalnya virus) dalam binatang yang cocok atau membiakkan sel dalam laboratorium. Virus kemudian dikumpulkan, dimatikan atau dilemahkan sebelum diinjeksikan ke dalam tubuh manusia. Tubuh kemudian membuat antibodi untuk menyerang mereka. Cara ini memerlukan waktu, tetapi yang merupakan masalah utama sebenarnya adalah sering kali tidak ditemukannya metode konvensional untuk membiakkan virus dalam jumlah banyak. Untuk mengatasi hal ini vaksin telah dibuat dengan rekayasa genetika dengan teknik “Kloning”.

d. Interferon

Sejarah interferon dimulai pada tahun 1957, ketika Alick Isaacs dan Jean Lindenmann meneliti tanggapan tubuh terhadap infeksi virus. Mereka menemukan bahwa suatu substansi yang disekresikan oleh sel yang terserang dapat membantu sel lain untuk menentang virus penyerang. Senyawa tersebut dinamakan interferon. Interferon digunakan untuk mengobati penyakit oleh virus dan beberapa penyakit kanker.

Sampai tahun 1980, sumber interferon dunia berasal dari laboratorium Karl Cantell di Helsinki, di sini sel darah putih dari donor darah dalam jumlah banyak, kemudian sengaja diinfeksi dengan virus untuk menghasilkan interferon. Jumlah interferon yang dibuat sangat kecil dan sangat sukar dipisahkan dari bahan lain yang terdapat dalam darah. Darah dari 90.000 donor hanya dapat menghasilkan 1 gram interferon, yang harganya dapat mencapai 50 juta (per gram).

Hal yang sangat menggembirakan Charles Weissman (Swiss, 1980) bersama kerabat kerjanya mengumumkan telah berhasil mengklonkan gen pengendali pembuatan satu tipe interferon manusia dengan menyisipkannya ke dalam bakteri, lalu sel bakteri tersebut segera membuat interferon. Kini interferon telah dapat diproduksi secara besar-besaran dan digunakan untuk mengobati berbagai infeksi virus (herpes, hepatitis, rabies) dan kanker.

3. Bidang Energi

Energi mutlak diperlukan manusia sebagai bahan dasar melakukan berbagai aktivitas. Sumber energi terbesar di dunia saat ini adalah bahan bakar fosil. Sementara bahan bakar fosil ini semakin hari semakin berkurang. Mau tidak mau manusia harus berpikir keras untuk mencari bahan bakar alternatif. Di antara berbagai alternatif penggunaan energi, biomassa merupakan suatu pilihan yang banyak mendapat perhatian.

Biomassa merupakan sumber energi kimia yang selalu dapat diperbarui. Bahan ini dapat dibakar atau dengan mudah diubah menjadi bahan bakar cair atau gas (metan, alkohol atau hidrogen) oleh mikroorganisme. Biomassa mempunyai pengertian produksi bahan bakar mutu tinggi dan senyawa kimia tertentu dari hasil budi daya tanaman dengan sengaja atau limbah biologi seperti yang dihasilkan dalam pertanian dan kehutanan atau limbah pengolahan pangan.

Di Brasil (1975), alkohol digunakan sebagai bahan bakar pengganti minyak bumi. Kendaraan bermotor menggunakan alkohol yang dicampur dengan bensin menjadi gasohol. Alkohol tersebut diperoleh dari fermentasi tebu. Di Amerika, gasohol merupakan campuran 10% alkohol dan 90% bensin, bahan pembuatan alkoholnya adalah jagung. Kebanyakan fermentasi etanol skala komersial dilakukan oleh khamir (Saccharomycess sp). Bahan yang digunakan bisa glukosa, fruktosa dan maltosa.

Bahan bakar lain adalah metan. Metan berasal dari penguraian bahan organik oleh bakteri anaerobik. Bahan organik yang dimaksud dapat berupa limbah ternak, limbah panenan, atau limbah manusia.

4. Bidang Makanan dan Minuman

Kisaran hasil pangan yang pembuatannya melibatkan mikroorganisme adalah sangat lebar, dari produk yang difermentasikan secara konvensional seperti tempe, oncom, kecap, mentega, keju, roti, yoghurt anggur, bir, tape, terasi, nata de coco, sampai yang modern seperti protein sel tunggal (PST) dan mikroprotein. Protein sel tunggal (“Single Cell Protein”) adalah sel

mikroorganisme yang dikeringkan seperti ganggang, jamur, bakteri, ragi, dan kapang.

Di bawah ini adalah daftar nama mikroba peranannya dalam mengubah bahan mentah menjadi suatu produk yang bernilai tinggi.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cita rasa dan aroma sangat penting agar makanan/minuman menjadi lebih enak dan menarik. Saat ini cita rasa dan aroma tidak hanya mengandalkan sumber dari bahan alami, tetapi sudah dapat disintesis di laboratorium.

Beberapa contoh senyawa penimbul flavour dan aroma yang mempunyai potensi untuk dikembangkan secara komersial dapat dilihat pada Tabel di bawah ini.

TABEL: Senyawa Penimbul Cita rasa/Aroma

 

 

 

 

 

 

 

 

 

 

 

 

 

Contoh-contoh enzim dalam industri makanan yang telah diproduksi melalui fermentasi adalah sebagai berikut.

 

 

 

 

 

 

 

 

 

TABEL: ENZIM DALAM INDUSTRI MAKANAN

 

 

 

 

 

 

 

 

 

 

5. Bidang Pertanian dan Peternakan

Bertambahnya penduduk dari waktu ke waktu tentu saja menuntut tersedianya bahan pangan yang lebih banyak. Dalam beberapa dasawarsa terakhir, produksi hasil pertanian telah meningkat melebihi kebutuhan. Hal ini mendorong manusia untuk selalu meningkatkan teknologi pangan. Bioteknologi mempunyai potensi besar untuk meningkatkan produksi tanaman yang lebih tinggi, tahan terhadap herbisida tertentu, tahan terhadap penyakit, mengurangi kebutuhan terhadap pupuk, dan lain-lain.

a. Pemuliaan Tanaman

Penyilangan konvensional oleh para petani dilakukan dengan tujuan menghasilkan tanaman yang menjadi besar, kuat, dan lebih tahan penyakit. Selama puluhan tahun bahkan ratusan tahun lalu para petani dan para pemulia tanaman telah berhasil memuiliakan tanaman padi, jagung, dan tebu, sehingga tanaman tersebut memiliki kualitas panen yang baik.

Pemuliaan tradisional telah banyak membantu meningkatkan produksi pertanian dalam kurun waktu 50 tahun terakhir. Data FAO tahun 1992 menunjukkan adanya peningkatan hasil biji-bijian dari rata-rata 1,1 ton per hektar pada tahun 1950 menjadi 2,8 ton per hektar pada tahun 1992. Namun, karena jumlah penduduk masih jauh lebih besar dibandingkan jumlah produksi pangan, peningkatan hasil pangan melalui proses pemuliaan ini masih terus dikembangkan.

Pada tahun 2030 diperkirakan penduduk dunia mencapai 8 miliar atau meningkat 2 miliar dari populasi sekarang. Di Indonesia sendiri diperkirakan pada tahun 2010 penduduk mencapai 245,71 juta atau bertambah sebesar 33,78 juta jiwa dari sekarang. Pada saat itu kebutuhan beras diperkirakan 36,42 juta ton, padahal produksi hanya 29,42 juta ton, sehingga defisit produksi mencapai 6,72 juta ton (Suryana A., 2002).

Akibat dari pembangunan yang sangat pesat di berbagai bidang dalam beberapa tahun terakhir ini lambat laun lahan produktif semakin banyak terkonversi menjadi lahan nonpertanian. Pada tahun 1950 lahan yang dapat dimanfaatkan untuk aktivitas per orang sekitar 0,24 hektar, tetapi lahan tersebut hampir separuhnya (0,12 hektar) pada tahun 1993 dan diperkirakan hanya akan tinggal 0,08 hektar pada tahun 2030 (Suranto, 1999).

Dari data di atas Indonesia diperkirakan akan mengalami krisis pangan yang dapat mengganggu ketahanan pangan nasional. Untuk mencukupi kebutuhan pangan penduduk yang populasinya terus bertambah dengan pesat ini, diperlukan lahan yang luas, sementara lahannya semakin berkurang. Oleh karena itu, diperlukan terobosan-terobosan di bidang teknologi pertanian untuk meningkatkan produktivitas pertanian.

Seperti diyakini para pakar rekayasa genetika merupakan salah satu teknologi pertanian yang berpeluang dapat meningkatkan produktivitas pertanian. Pada pemuliaan tradisional diperlukan sedikitnya lima generasi penyilangan balik untuk menghilangkan gen-gen yang tidak dikehendaki sehingga pemuliaan tradisional memerlukan waktu yang lama. Dengan kemajuan ilmu genetika molekuler pada tahun 1970-an, dimungkinkan usaha mencari gen yang diduga bertanggung jawab terhadap karakter unggul satu tanaman. Saat ini secara umum ada dua cara untuk mencari gen tanaman itu, yakni isolasi gen dalam skala kecil dengan menargetkan satu gen saja (strategi ini disebut map-based cloning) dan dalam skala besar dengan menggunakan proyek genom, yaitu dengan membaca (dalam istilah khususnya menyekuen) semua urutan DNA suatu organism untuk mendapatkan semua gen yang ada.

Pada tahun 1920 istilah genom telah lahir, dipakai untuk menunjukkan keseluruhan kode genetika pada kromosom yang ada pada suatu organisme. Baru pada tahun 1944 diketahui bahwa materi dari kode genetik itu adalah DNA yang ada pada setiap organisme. Sekarang ini istilah genom telah begitu dikenal luas oleh masyarakat. Keunggulan rekayasa genetika adalah mampu memindahkan materi genetika dari sumber yang sangat beragam dengan ketepatan tinggi dan terkontrol dalam waktu yang lebih singkat. Usaha yang dilakukan untuk menanggulangi krisis pangan di Indonesia dengan pendekatan biologi molekuler, antara lain dengan merakit tanaman yang resisten terhadap serangan hama dan penyakit, toleran terhadap cekaman lingkungan serta bergizi tinggi.

b. Transgenik

Rekayasa genetika dalam bidang tanaman dilakukan dengan mentransfer gen asing ke dalam tanaman. Hasil rekayasa genetika pada tanaman seperti ini disebut tanaman transgenik. Pernahkah kamu berpikir bahwa sepotong jagung dan sebuah tomat dapat menyembuhkan penyakit? Atau hanya dengan memakan pisang kita dapat melindungi diri dari hepatitis?

Prodi gene Inc. of College station, Texas menjadi perusahaan pertama yang berhasil memodifikasi tanaman untuk menghasilkan protein tertentu yang berfungsi sebagai obat. Protein tersebut adalah trypsin, insulin, dan obat penting lainnya yang akan dimasukkan ke dalam jagung. Mereka juga mengujinya pada kentang, tomat dan wortel untuk menghasilkan vaksin hepatitis B. Para peneliti juga memodifikasi tomat, bayam, dan melon untuk menghasilkan vaksin rabies.

Kedelai transgenik muncul menjadi obat untuk herpes. Sebuah tim ilmuwan dari Purdue University dan Departemen Pertanian AS (USDA) telah mengembangkan tomat yang tiga setengah kali lebih banyak mengandung lycopene dan antioksidan untuk melawan kanker. Kemajuan ini sangat penting dan dalam kenyataan jumlah tanaman transgenik yang diproduksi setiap tahun semakin meningkat. Hingga tahun 1988 yang asalnya hanya ada 23 tanaman transgenik, meningkat menjadi 30 pada tahun 1989 dan lebih dari 40 pada tahun 1990.

Pencangkokan (kloning) adalah transplantasi/transfer gen ke gen lainnya, misalnya gen pankreas babi ditransplantasikan ke bakteri E. Coli sehingga dihasilkan insulin dalam jumlah besar. Sebaliknya gen bakteri yang menghasilkan toksin pembunuh hama ditransplantasikan ke tanaman jagung, maka akan diperoleh jagung transgenik yang tahan hama tanaman. Gen dari sel kelenjar susu domba ditransplansikan ke sel telurnya sendiri yang kemudian ditumbuhkembangkan di dalam kandungan induknya sehingga lahirlah Domba Dolly. Demikian pula gen tomat ditransplantasikan ke ikan transgenik sehingga ikan menjadi tahan lama dan tidak cepat busuk dalam penyimpanan.

Vektor DNA yang digunakan untuk memindahkan gen ke dalam tumbuhan, misalnya plasmid dari bakteri Agrobakterium tumefaciens. Perhatikan gambar berikut ini.

 

 

GAMBAR: penggunaan plasmid pada transgenik

 

 

 

 

 

 

 

 

 

 

 

Tanaman membutuhkan unsur N yang cukup. Kemampuan tanaman untuk memperoleh nitrogen sangat penting. Rhizobium merupakan penambat nitrogen yang sangat populer dan banyak ditemukan pada akar kacangkacangan. Telah lama diketahui bahwa enzim utama yang berperan menambat nitrogen tersebut adalah nitrogenase. Ternyata lebih dari selusin gen yang terlibat dalam menghasilkan enzim tersebut. Gen tersebut dinamakan gen nif (Nitrogen fixation). Rekayasa genetik telah berhasil untuk mentransfer gen nif dari bakteri penambat nitrogen ke dalam Eschecilia coli sehingga bakteri E Coli kemudian mampu menambat nitrogen. Bakteri ini kemudian dapat dijadikan inokulan untuk diberikan pada tanaman budi daya.

c. Transplantasi nukleus pada hewan

Pada tahun 1997 seorang peneliti Skotlandia, Ian Wilmut dan rekanrekannya menguasai pokok pemberitaan di berbagai media bahwa mereka telah mengklon seekor domba dewasa dengan mentrasplantasi nukleus dari sel puting susu kambing ke dalam suatu sel telur domba lain yang tidak di buahi. Hasilnya adalah domba “Dolly” yang DNA-nya sungguh-sunguh identik dengan domba pendonor nukleus, perhatikan Gambar:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GAMBAR: Pengklonan Seekor Mamalia

 

 

1. Sel kelenjar susu diambil dari kambing seekor domba dan ditumbuhkan di dalam kultur dengan nutrisi rendah. Kondisi nutrisi rendah (setengahkelaparan) ini menahan siklus sel tetap berada pada G0 dan tampaknya membiarkan sel untuk berdediferensiasi.

2. Sementara itu sel telur diambil dari domba lain dan nukleusnya dipindahkan.

3. Sel kelenjar susu dalam fase G0 berfusi dengan sel telur yang tak bernukleus dengan cara memberikan getaran arus listrik ke kedua sel tersebut, yang juga merangsan agar mulai melakukan pembelahan.

4. Setelah ditumbuhkan dalam kultur selama 6 hari.

5. Embrio ditanam pada uterus domba ketiga, yang mirip seperti pendonor sel telur.

6. Hasilnya setelah kehamilan berupa anak domba (Dolly) yang identik dalam penampakan dan susunan kromosomnya dengan domba yang mendonorkan sel kelenjar susu. (Namun, gen Dolly tidak identik secarakeseluruhan dengan domba pendonor sel kelenjar susu karena DNA mitokondria Dolly berasal dari pendonor sel telur). Dolly ini merupakan kasus pertama yang laporannya disebarluaskan tentang mamalia yang “diklon” menggunakan nukleus dari suatu sel terdiferensiasi. Fotograf pada Gambar memperlihatkan Dolly ketika sudah menjadi seekor domba dewasa.

 

d. Proyek Genom

Tanaman menyediakan materi untuk kebutuhan industri seperti minyak, tekstil, bahan bakar dan obat-obatan. Nenek moyang kita dahulu meningkatkan kualitas tanaman dengan menyeleksi tanaman berdasarkan sifat dan karakter yang diinginkan melalui proses persilangan yang panjang. Sifat unggul dari satu tanaman liar digabungkan ke tanaman lain sehingga terbentuk tanaman baru dengan beberapa karakter yang lebih bagus. Proses panjang ini telah memungkinkan lahirnya revolusi hijau, dalam hal ini produk pertanian teroptimalkan sampai menyamai pertambahan jumlah penduduk dunia. Meskipun demikian, ledakan penduduk dunia terutama di negaranegara berkembang yang diikuti oleh berkurangnya lahan-lahan pertanian untuk pemukiman menyebabkan pertanian tidak seimbang lagi. Dengan demikian, usaha persilangan yang memakan waktu lama dengan sendirinya tidak mampu meningkatkan hasil produksi untuk mencukupi kebutuhan pangan pada masa mendatang. Untuk itu diperlukan satu teknologi baru guna meningkatkan produksi pangan secara lebih cepat.

Salah satu penemuan spektakuler telah dikembangkan, kita kenal dengan istilah Proyek Genom (“Genom Project”). Strategi ini ditopang dengan majunya perkembangan teknologi marker DNA, pemetaan genetika dan perpustakaan genom (genome library), teknologi sekuen DNA secara otomatis, serta analisis komputer (computerized analysis). Selain itu juga teknik kultur jaringan untuk mentransfer gen-gen yang ditemukan. Dengan demikian, bisa dikatakan ada dua tahap revolusi pertanian, yang pertama dicapai dengan persilangan tanaman secara tradisional yang memakan waktu dan yang kedua adalah melalui aplikasi ilmu genetika molekuler.

Proyek genom adalah proyek menyekuen urutan DNA setiap kromosom dari ujung ke ujung. Proyek genom pada tanaman sangat menjanjikan untuk mendapatkan informasi terlengkap tentang seluruh sifat biologis tanaman. Informasi ini akan membantu kita memahami bagaimana gen-gen menyebabkan tanaman mampu melaksanakan segala aktivitasnya sebagai makhluk hidup.

Inilah target umum proyek genom tanaman. Adapun target khususnya adalah untuk mengisolasi gen-gen yang memberikan sifat unggul, seperti sifat tahan penyakit, sifat toleran pada tanah bergaram, dan sifat alami lainnya, di antaranya gen yang mengatur pembentukan minyak biji-bijian atau waktu berbunga yang semuanya berdampak pada hasil panen. Usaha ini nantinya akan memungkinkan rekayasa genetika untuk menghasilkan tanaman baru yang lebih berkualitas.

Besarnya proyek genom serta teknologi yang mendukung untuk penyelesaiannya melahirkan genomika sebagai ilmu baru. Genomika diartikan sebagai usaha mendalami struktur dan fungsi gen dalam skala besar. Genomika dibagi dalam dua bagian, yaitu structural genomics (genomika struktur) dan functional genomics (genomika fungsi). Berikut ini beberapa contoh mikroba yang telah selesai pembacaan genomnya dan prospek yang diharapkan saat ini dan masa yang akan datang.

1) Pengubahan Zat Pati

Clostridium acetobutylicum adalah bakteri yang dapat mengubah zat pati menjadi pelarut organik aseton dan butanol yang sangat bermanfaat untuk industri.

2) Tahan Radioaktif

Deinococcus radioduran adalah mikroba yang dapat bertahan di lingkungan radioaktif berdosis tinggi yang membunuh hampir semua makhluk hidup lain. Bakteri ini dapat bertahan hidup pada tingkat radiasi 1,7 juta rad yang membuat E. Coli, kecoa, dan manusia tak mungkin bertahan hidup.

Informasi genom bakteri ini sangat potensial untuk proses “bioremediasi” seperti pembersihan lingkungan dari limbah radioaktif, logam berat atau senyawa kimia organik. Saat ini para peneliti di Amerika Serikat sedang mengekplorasi kapabilitas bakteri D. radioduran dengan menambah gen dari organisme lain. Tambahan gen ini mengodekan protein yang bisa mengubah logam berat menjadi biomassa yang lebih netral dan menguraikan zat organik berbahaya, seperti toluena. Diharapkan pula dengan mempelajari genom mikroba, manusia dapat lebih memahami proses terjadinya sel kanker sekaligus menemukan obat dan cara pengobatan kanker tersebut sebab bakteri ini sanggup memperbaiki DNA-nya sendiri yang rusak karena pengaruh radiasi.

3) Penghasil Gas Metan

Arkeo Methanococcus jannaschii adalah mikroba yang dapat menghasilkan gas metan. Mikroba ini ditemukan di lingkungan berasap hidrothermal, tanpa cahaya, tanpa oksigen, tanpa sumber zat karbon. Sifat yang sangat tidak biasa yang dimiliki oleh mikroba ini membawa pada kesimpulan bahwa makhluk hidup tidak hanya “prokariot” dan “eukariot”, tetapi ada kelompok baru yang berbeda dengan prokariot dan eukariot. Para ilmuwan mengelompokkan mikroba ini ke dalam kelompok baru yaitu Archeae (Arkeo). Dengan berhasilnya pembacaan genom mikroba ini diharapkan masalah mengenai bahan bakar dapat dipecahkan.

Aplikasi dahsyat dan kemajuan sains yang dijanjikan oleh proyek ini memang di depan mata. Proyek genom mikroba ini sampai saat ini memang hanya milik negara-negara maju yang bermodal besar. Namun, mudah-mudahan masa depan yang cerah ini bukan hanya milik negaranegara bermodal besar. Indonesia tak kalah kaya dengan mikroba yang potensial untuk kehidupan masa depan.

Gambar: Mikroba penghasil gas metan

 

 

 

 

 

 

 

 

 

 

4) Menstabilkan Jumlah Karbon Dioksida di Atmosfer

Mikroba lain seperti Nitrosomonas europaea, Prochlorococcus marinu, Rhodopseudomonas palustris adalah organisme yang menjadikan karbondioksida sebagai satu-satunya sumber nutrisi zat karbonnya. Mikrobamikroba ini diduga mempunyai peranan penting dalam perubahan iklim. Dengan demikian, informasi yang didapat dari genom mikroba-mikroba ini mampu berperan mengatasi pemanasan global dengan menstabilkan jumlah CO2 di atmosfer.

Gambar: Berbagai jenis bakteri

 

 

 

 

 

 

 

 

 

 

Pada tahun 1998 Arabidhopsis thaliana dikukuhkan menjadi tanaman pertama yang disekuen genomnya oleh konsorsium internasional dari Jepang, Eropa dan Amerika. Arabidhopsis merupakan model yang cocok bagi kelompok tanaman berbji belah yang termasuk di dalamnya tomat, kentang, tembakau, dan sayur-sayuran. Di antara kelebihan model ini adalah ukuran genomnya yang kecil. Tanaman diploid yang terdiri atas 5 set kromosom mudah ditanam karena kecil dan cepat menghasilkan biji untuk regenerasi, latar belakang genetika memadai, serta mudahnya proses transformasi.

Padi memiliki nilai ekonomi tinggi karena menjadi makanan pokok lebih dari setengah jumlah penduduk di planet ini. Padi merupakan tanaman berbiji tunggal, diploid dengan 12 kromosom, dan mempunyai ukuran genom yang lumayan kecil, yaitu 450 juta base. Latar belakang genetika padi sangat kuat dengan adanya peta genetika yang terlengkap di antara tanaman lain, yaitu adanya lebih dari 2.000 molecular marker DNA yang terbagi merata sepanjang kromosomnya serta proses transformasinya padi yang sudah berkembang. Secara evolusi, padi mempunyai hubungan sangat erat dengan tanaman pangan yang masuk dalam jenis rumput-rumputan. Berdasarkan studi perbandingan, ternyata pada konservasi gene collinearity (persamaan urutan gen) dalam kromosom antara padi dan anggota keluarga rerumputan, seperti barley, oats (keduanya adalah jenis gandum), jagung, dan gandum.

Untuk itu, dengan menyekuen genom padi, semua gen dari tanaman berbiji tunggal yang notabene adalah bahan pokok hidup manusia sedunia bisa diketahui. Pada tahun 1998, dalam pertemuan Internasional Society of Plant Molecular Biologist (ISPMB) di Singapura, padi dari jenis nipponbare disetujui sebagai tanaman model kedua untuk proyek genom setelah Arabidhopsis oleh konsorsium internasional yang beranggotakan Jepang, Cina, Korea, Amerika, dan Uni Eropa.

Selain pada tumbuhan proyek genom juga dilakukan pada manusia. Hanya dalam tempo tiga belas tahun, lebih cepat dua tahun dari target tahun 2005 para ilmuwan dunia yang bergabung dalam The Human Genom Project mengumumkan keberhasilan mereka memetakan genom manusia. Karena genom adalah suatu cetak biru informasi genetik yang menentukan sifat setiap makhluk hidup, maka pemetaan ini bakal menjadi kunci pembuka babak baru dalam memahami penyakit dan bagaimana mengobatinya. Informasi genetika setiap makhluk hidup disandi dalam bentuk pita molekul asam deoksiribonukleat yang dikenal sebagai DNA. Dengan pengumuman di atas, berarti proyek genom manusia telah berhasil memetakan tiga miliar nukleotida yang menyusun 100.000 gen dalam tubuh manusia. Dengan demikian, setiap individu memiliki kurang lebih 100.000 gen untuk diturunkan. Varian-varian dari gen inilah yang kemudian menentukan tinggi badan, warna mata, sidik jari, golongan darah, maupun kerentanan terhadap penyakit.

Lembaga pertama “The Human Genom Project“ membangun peta susunannya dari DNA yang diambil dari 24 individu anonim dari berbagai grup ras dan etnisitas. Dari situlah dipahami adanya perbedaan rata-rata tiga juta antara satu orang dan orang lainnya. Proyek riset genom memang masih akan berlanjut dengan upaya mencari mutasi gen-gen penyebab kanker yang mematikan maupun gen yang terlibat dalam pemunculan diabetes, leukemia, bahkan juga eksim yang suka muncul pada usia kanak-kanak.

Seperti yang diberitakan Reuters, para peneliti di Amerika Serikat, Prancis, Jerman, Jepang, dan Cina mengungkapkan, mereka sebenarnya juga berminat menguak misteri protein yang menyusun jaringan dan mengatur fungsi metabolisme tubuh. Namun, kode genetikanya ternyata lebih kompleks dari yang dibayangkan. Memang harus diakui, masih perlu jalan panjang untuk mengaplikasikan hasil pemetaan genom manusia ini. Pekerjaan memetakan genom manusia tentulah pantas dipandang sebagai ikhtiar ilmiah yang mengagumkan.

 

6. Bidang Lingkungan Hidup dan Pengolahan Limbah

Limbah rumah tangga, pertanian, dan aktivitas industri telah banyak mengubah lingkungan kita, membuat pencemaran yang sangat merusak dan membahayakan ekosistem. Limbah tersebut dapat berupa senyawa kimia cair (asam, basa) dan senyawa kimia padat (logam logam berat), tumpahan minyak, pestisida, pupuk, dan lain-lain.

Bioteknologi yang berperan penting dalam pemeliharaan lingkungan ditujukan pada proses mengatur dan membuat produk buangan tersebut menjadi aman untuk dibuang ke lingkungan. Banyak bakteri dapat mengekstraksi logam-logam berat, seperti tembaga, timbal, nikel, dan besi.

Kelompok bakteri yang diduga bersifat aktif dalam proses pengolahan air limbah dikenal sebagai zoogles, meskipun sejumlah organisme lain juga ikut terlibat, seperti ganggang biru, ganggang hijau, cacing tanah, dan serangga. Saat ini banyak pabrik yang mengelola limbah cairnya dengan pengaktifan lumpur (lumpur aktif). Sejumlah mikroorganisme yang terlibat dalam lumpur aktif ini adalah Achromobacter, Flavobacterium, Pseudomonas, moraxella, Thiobacillus, Nitrosomonas, Nitrobacter dan Ferrobacillus sp

 

B. DAMPAK BIOTEKNOLOGI TERHADAP SAINS, LINGKUNGAN, TEKNOLOGI, DAN MASYARAKAT

1. Transgenik

Seperti yang telah dikemukakan pada bagian sebelumnya, bahwa produk transgenik yang dikenal juga dengan istilah GMO = Genetics Manipulation Organism merupakan produk bioteknologi yang spektakuler. Dengan transgenik (gen suatu species disisipi dengan gen tertentu) memungkinkan terbentuknya suatu jenis hewan atau tumbuhan yang mempunyai sifat-sifat unggul, seperti lebih besar, lebih kuat, tahan lama, dan kandungan gizi tinggi.

Pertanyaannya sekarang adalah “Seberapa aman produk teknologi reproduksi tersebut?” Sejauh ini terdapat sejumlah pernyataan aman dari lembaga resmi internasional, seperti WHO dan FAO. (Masih ingat kepanjangan WHO dan FAO?). Masyarakat AS sejak tahun 1996 telah mengonsumsi kedelai transgenik dan tidak ada laporan dampak negatif yang timbul. Masyarakat Eropa yang awalnya menentang produk transgenik kini sudah mulai menerima. Hal ini ditandai dengan adanya pernyataan dari Komisi Pusat Masyarakat Eropa di Brussel pada bulan Oktober 2001.

Akan tetapi, ada juga yang berpendapat bahwa terdapat beberapa kemungkinan risiko mengonsumsi makanan transgenik ini, seperti keracunan, risiko kanker, dan alergi makanan. Hal ini disebabkan antara lain produk transgenik tersebut bersifat “kebal antibiotik”, dan mengundang “residu pestisida”. Beberapa produk transgenik yang sudah dilepas di pasaran negaranegara maju, sepanjang penelitian ilmiah dengan teknologi dan pengamatan yang ada sekarang, tidak ada masalah dalam hal keamanan terhadap lingkungan ataupun tubuh manusia. Demikian kesimpulan Departemen Kesehatan Inggris dalam laporannya tahun 1999.

Sejak 20 tahun lalu, teknologi ini dimanfaatkan hingga kini karena belum ada laporan ilmiah yang memaparkan efek negatif produk rekayasa genetika yang telah dievaluasi sesuai standar Jepang adalah aman. Ini kesimpulan Departemen Pertanian dan Kehutanan Jepang tahun lalu. Di Indonesia sendiri, meskipun mengundang banyak protes dari banyak pihak, pengembangan kapas transgenik telah ditanam di tujuh kabupaten Sulawesi Selatan. Namun, penelitian yang dilakukan oleh dua mahasiswa Pascasarjana Program Studi Bioteknologi IPB (Institut Pertanian Bogor), Marhamah Nadir dan Reza Indriadi membuktikan bahwa kapas transgenik di Indonesia ternyata mengontaminasi kapas non-transgenik di sekitarnya. Penelitian tersebut dilakukan selama setahun (September 2001–Agustus 2002).

Adanya kontaminasi (pencemaran genetik) dapat menyebabkan antara lain kebalnya hama (sehingga dapat memicu ledakan hama), mengganggu kesehatan bahkan tanaman transgenik tersebut menjadi gulma. Gulma adalah tanaman liar yang mengganggu tanaman budi daya. Jadi, sebenarnya mengelola tanaman transgenik itu tidak gampang, karena itu, perlu

pengkajian yang benar, peraturan dan pengawalan yang ketat pula.

Dengan tetap berprinsip pada pendekatan kehati-hatian (precautionary approach) bahwa OHM (organisme hidup hasil modifikasi) yang secara nyata dapat memberi manfaat bagi manusia, tetapi tetap perlu waspada untuk mencegah hal-hal yang dapat merugikan bagi kesehatan manusia, pelestarian lingkungan, dan keanekaragaman hayati, maka Indonesia bersama dengan 133 perwakilan pemerintah, LSM, organisasi industri, dan masyarakat ilmiah, telah menyepakati suatu kesepakatan internasional mengenai pengaturan tata cara gerakan lintas batas negara (termasuk penanganan dan pemanfaatan) OHM, atau yang terkenal dengan Cartagena Biosafety Protocol, pada tanggal 29 Februari 2000, di Mountreal, Kanada.

Cartagena Biosafety Protocol (cartagena Protocol) adalah kesepakatan antara berbagai pihak yang mengatur tata cara gerakan lintas batas Negara secara sengaja (termasuk penanganan dan pemanfaatan) suatu organism hidup yang dihasilkan bioteknologi modern dari suatu negara ke negara lain oleh seseorang atau badan. Tujuan dibuatnya Cartagena Biosafety Protocol adalah untuk memberikan kontribusi dalam memastikan tingkat proteksi yang memadai dalam hal transfer, penanganan, dan penggunaan yang aman dari organisme hidup hasil bioteknologi modern. Hal itu untuk menjaga adanya kemungkinan pengaruh yang merugikan kelestarian dan pemanfaatan yang berkelanjutan pada keanekaragaman hayati, dengan mempertimbangkan risiko terhadap kesehatan manusia, dan khususnya berfokus pada pergerakan lintas batas. Sebenarnya sebelum tanaman transgenic disetujui untuk dikomersialisasi, tanaman tersebut telah diuji melalui proses evaluasi makanan bioteknologi.

2. Bayi Tabung

Bagi pasangan suami istri yang tak kunjung dikaruniai anak, program bayi tabung ini tentu sangat membantu. Terlebih di masyarakat masih tertanam kuat bahwa perkawinan tanpa anak dikatakan tidak sempurna. Tidak jarang berbagai masalah akan muncul karena alasan yang satu itu, tetapi tidak jarang masyarakat yang berpendapat tidak setuju dengan program bayi tabung ini. Hal tersebut dapat dimengerti sebab dikhawatirkan sel telur maupun sel sperma tidak berasal dari pasangan suami istrinya yang sebenarnya, melainkan sperma dari donor. Dari segi agama tentu hal ini tidak dibenarkan.

Walaupun dirasakan manfaatnya, program ini masih menimbulkan perdebatan. Perdebatan ini terfokus pada segi agama, etika, legalitas dan sosial, baik menyangkut prosedur maupun produk yang dihasilkan. Sebagian kelompok agamawan menolak “fertilitas in vitro” pada manusia karena dianggap mempermainkan Tuhan sebagai sang pencipta. Hal ini dapat dimengerti sebab dikhawatirkan sel telur maupun sperma tidak berasal dari pasangan suami istri yang sebenarnya. Sperma bisa saja dari donor (bank sperma). Dari segi agama tentu hal ini tidak dapat dibenarkan karena individu baru tersebut dapat kehilangan nasabnya (keutuhan keturunannya).

Di Indonesia sendiri sebenarnya program bayi tabung ini diatur berdasarkan undang-undang, yaitu UU No. 23/1992, tentang kesehatan. Undang-undang ini menjelaskan pelaksanaan program bayi tabung harus dilakukan sesuai dengan norma hukum, agama, kesusilaan, dan kesopanan. UU ini juga mengatur bahwa dalam pelaksanaan program bayi tabung di Indonesia tidak diizinkan menggunakan rahim milik wanita yang bukan istrinya.

Selain Undang-undang di atas, program bayi tabung di Indonesia, saat ini juga mengacu pada peraturan Menteri Kesehatan RI No.73/Menteri Kes/ Per/11/1999 tentang Penyelenggaraan Pelayanan Teknologi Reproduksi Buatan. Peraturan ini mengatur penyelenggaraan teknologi reproduksi buatan hanya dapat dilakukan di Rumah Sakit Umum Pemerintah Kelas A, B dan Rumah Sakit Umum Swasta kelas utama. Penyelenggaraan penelitian dan pengembangan teknologi reproduksi buatan hanya dapat dilakukan oleh Rumah Sakit Umum yang menyelenggarakan teknologi reproduksi buatan. Rumah Sakit yang diberi izin penyelenggaraan dan pelayanan, penelitian dan pengembangan adalah RSUP Cipto Mangunkusumo, RSAB Harapan Kita, RSUD Dr.Soetomo Surabaya. Dalam pasal 4 disebutkan pelayanan teknologi reproduksi buatan hanya dapat diberikan kepada pasangan suami istri yang terikat perkawinan yang sah dan sebagai upaya akhir untuk memperoleh keturunan.

3. Kloning

Kloning sebenarnya penting untuk menghasilkan organisme unggul baik pada tumbuhan maupun hewan. Di bidang pengobatan, klon hewan dipakai sebagai media membuat obat yang sangat langka dan mahal harganya, seperti yang dilakukan oleh Ian Wilmut yang menghasilkan Dolly, domba cloning pertama yang lahir pada tanggal 5 Juli 2003 di Skotlandia. Ian Wilmut berhasil membuat klon domba dengan sel donor dari kelenjar susu domba jenis “findorset” yang berumur 6 tahun. Findorset sebagai donor berbulu putih, sedangkan telurnya diambil dari domba betina jenis blacface, yang mukanya berbulu hitam, hasilnya Dolly yang berbulu putih bersih.

Setelah Dolly, sebenarnya secara teknik, klon manusia juga dapat dilakukan. Kloning dilakukan dengan cara mengeluarkan inti telur betina dan menggantinya dengan inti dari orang dewasa. Kalau berhasil, telur hasil rekayasa yang mulai berkembang tersebut ditanam di dalam rahim seorang perempuan. Nantinya telur tersebut akan tumbuh menjadi duplikat orang dewasa yang menyumbangkan intinya itu.

Secara medis infertilitas ketidaksuburan digolongkan sebagai penyakit. Salah satu cara yang sudah lazim ditempuh adalah teknik invitro (bayi tabung). Namun demikian, invitro tidak dapat menolong semua pasangan infertil, misalnya bagi seorang ibu yang tidak dapat menghasilkan sel telur, dan pria yang tidak dapat menghasilkan sperma. Dalam hal ini, teknik kloning merupakan hal yang “revolusioner” sebagai pengobatan infertilitas karena penderita tidak perlu menghasilkan sperma atau telur. Mereka hanya memerlukan sejumlah sel dari manapun diambilnya.

Pengklonan juga dapat dilakukan terhadap anggota badan untuk mengganti jaringan sel yang rusak di dalam tubuh. Bagaimana tanggapan masyarakat mengenai hal ini? Ternyata masih merupakan kontroversi. Berbagai usulan melarang kloning manusia. Banyak kalangan menganggap bahwa “pengklonan manusia secara utuh tidak boleh dilakukan sebab anggapan sebagai intervensi karya ilahi dan tidak bermoral.”

DAFTAR PUSTAKA

Sudjadi. 2005. Bioteknologi. UGM Press. Yogyakarta

Hadikastowo. 2002. Bioteknologi Kesehatan. Penerbit Alumni. Bandung.

Djuhanda, Tatang.2004 . Aplikasi Bioteknologi dalam Masyarakat. Armico. Bandung.

Prawirohartono, Slamet.. 2005, Pengantar Bioteknologi. Bumi Aksara . Jakarta

11/15/2009 Posted by | Uncategorized | Tinggalkan komentar

MENJELASKAN TEORI, PRINSIP, DAN MEKANISME EVOLUSI BIOLOGI

A. TEORI-TEORI EVOLUSI

Kata evolusi awalnya diungkapkan oleh seorang ahli fi lsafat dari Inggris, akan tetapi belum mengarah pada evolusi kehidupan. Dalam perkembangannya, evolusi digunakan oleh seorang ahli naturalis untuk menjelaskan fenomena kehidupan yang mengalami perubahan dari waktu ke waktu. Berikut uraian tentang konsep evolusi yang telah diungkapkan oleh para ahli.

  1. Herbert Spencer

Herbet Spencer adalah seorang ahli fi lsafat dari Inggris yang pertamakali menggunakan istilah evolusi. Menurut Spencer, konsep evolusi yang dimaksud adalah berkaitan dengan suatu perkembangan ciri atau sifat dari waktu ke waktu melalui perubahan bertingkat. Pengertian yang dikemukakan oleh Spencer tersebut menunjukkan terjadinya suatu proses perubahan. Namun demikian, tampak bahwa pengertian yang dimaksud tidak terkait dengan kajian biologi, dan pada perkembangannya istilah tersebut tenggelam bersamaan dengan perkembangan pemikiran para ahli filsafat yang lain.

  1. J.B. Lamarck

Berbeda halnya dengan Spencer, Lamarck memunculkan istilah evolusi yang berkaitan dengan bidang kajian biologi yakni evolusi makhluk hidup. J.B Lamarck mengungkapkan bahwa, makhluk hidup merupakan tingkat-tingkat perkembangan kehidupan, sedang manusia berada di puncak perkembangan tersebut. Yang artinya bahwa tidak akan muncul lagi makhluk hidup yang lebih tinggi tingkat ke sempurnaannya di masa yang akan datang. Proses perkembangan tersebut menurut Lamarck dipengaruhi oleh kebiasaan. Kebiasaan tersebut akan menyebabkan perubahan struktur tubuh (anatomi) dan diwariskan kepada keturunannya. Sebagai akibat pengaruh kebiasaan tersebut, Lamarck menyimpulkan bahwa organ-organ yang digunakan

akan berkembang sedangkan organ yang tidak digunakan akan mengalami kemunduran (use and disuse).

Lamarck memberikan contoh fenomena jerapah sebagai pendukung teorinya. Menurut Lamarck, jerapah pada mulanya berleher pendek. Karena sering digunakan untuk menggapai pucuk dedaunan yang semakin tinggi, maka leher jerapah menjadi panjang. Mengapa jerapah harus menggapai pucuk dedaunan yang tinggi? Lamarck menjelaskan bahwa pucuk di bagian bawah telah habis dimakan, sehingga untuk mempertahankan hidup maka jerapah harus menjangkau pucuk dedaunan yang tinggi.

Dari contoh tersebut jelas bahwa faktor lingkungan yakni pucuk dedaunan yang makin tinggi untuk dijangkau, telah meme ngaruhi jerapah untuk menjulurkan lehernya. Akhirnya terjadi perubah an struktur anatomi leher jerapah menjadi semakin panjang dan sifat ini diwariskan kepada keturunannya.

Perkembangan leher jerapah dari waktu ke waktu

 

 

 

 

 

 

 

 

 

  1. Charles Darwin

Kalian tentunya pernah mendengar nama ilmuwan tersebut bukan? Charles Darwin adalah tokoh yang sangat terkenal dalam kaitannya dengan evolusi. Darwin banyak mengemukakan gagasan-gagasannya tentang evolusi. Karena pemikirannya tersebut, Darwin dikenal sebagai Bapak Evolusi.

Pokok-pokok pemikiran yang melandasi ajaran Darwin mengenai evolusi antara lain:

1)      Tidak ada individu yang identik, selalu ada variasi meskipun dalam satu keturunan

 

 

 

Variasi warna bulu ayam

 

 

 

 

 

 

 

 

2) Setiap populasi cenderung bertambah banyak karena setiap makhluk hidup mampu berkembang biak.

3) Untuk berkembangbiak diperlukan makanan dan ruang yang cukup.

4) Pertambahan populasi tidak berlangsung secara terus menerus, tetapi dipengaruhi oleh berbagai macam faktor pembatas antara lain makanan dan predasi.

Darwin membantah teori Lamarck yang mengungkapkan bahwa perkembangan makhluk hidup menuju ke arah kesempurnaan, dipengaruhi oleh faktor lingkungan dan diwariskan kepada keturunannya. Dalam bukunya Th e Origin of Spesies by means of Natural Selection, Darwin menyatakan dua hal penting sebagai Teori Evolusi yaitu:

a) Spesies-spesies yang hidup sekarang berasal dari spesies nenek moyangnya yang hidup di masa lalu.

b) Perkembangan spesies dipengaruhi oleh seleksi alam dan variasi antar populasi.

Fenomena jerapah dengan leher panjang dijelaskan oleh Darwin dengan melihat dari sudut pandang adanya variasi. Menurut Darwin, jerapah pada mulanya ada yang berleher panjang dan ada yang berleher pendek. Jerapah yang berleher pendek tidak mampu bertahan hidup karena kalah dalam berkompetisi dengan jerapah berleher panjang untuk memperoleh makanan berupa dedaunan pada pohon yang tinggi. Akibatnya populasi jerapah berleher pendek menjadi punah dan tinggal populasi jerapah berleher panjang yang mampu bertahan hidup di lingkungannya (Hukum survival of the fi ttest). Supaya kalian lebih memahami konsep evolusi Darwin, cermatilah bagan alir berikut ini.

 

Bagan alir konsep Teori Evolusi Darwin

 

 

 

 

 

 

 

 

 

 

Dari pendapat para ahli di atas, munculah Teori Evolusi yang terbaru yakni yang dikenal sebagai Teori Sintetik. Teori ini merupakan gabungan dari teori Lamarck, Darwin, dan hukum pewarisan Mendel yang isinya mengungkapkan bahwa evolusi terjadi karena perubahan frekuensi gen dari suatu generasi ke generasi berikutnya. Ahli lain bernama De Vries melengkapi teori ini dengan menyatakan bahwa evolusi terjadi karena perubahan frekuensi gen akibat mutasi.

 

B. PRINSIP-PRINSIP EVOLUSI

Berbagai macam teori evolusi yang dicetuskan oleh para tokoh tersebut, akan menjadi dasar pemikiran tentang evolusi selanjutnya. Proses evolusi dapat dibedakan atas dasar faktor-faktor berikut.

  1. Evolusi Berdasarkan Arahnya

Berdasarkan arahnya evolusi dibedakan menjadi dua:

  1. Evolusi Progresif

Evolusi progresif merupakan evolusi menuju pada kemungkinan yang dapat bertahan hidup (survival). Proses ini dapat dijumpai melalui peristiwa evolusi yang terjadi pada burung Finch.

 

 

  1. Evolusi Regresif

Evolusi regresif merupakan proses menuju pada kemungkinan kepunahan. Hal ini dapat dijumpai melalui peristiwa evolusi yang terjadi pada hewan dinosaurus.

  1. Evolusi Berdasarkan Skala Perubahannya

Berdasarkan skala perubahannya, evolusi dapat dibedakan menjadi dua:

  1. Makroevolusi

Makroevolusi adalah perubahan evolusi yang dapat mengakibatkan perubahan dalam skala besar. Adanya makroevolusi dapat mengarah kepada terbentuknya spesies baru.

  1. Mikroevolusi

Berkebalikan dengan makroevolusi, mikroevolusi adalah proses evolusi yang hanya mengakibatkan perubahan dalam skala kecil. Mikroevolusi ini hanya mengarah kepada terjadinya perubahan pada frekuensi gen atau kromosom.

 

  1. Evolusi Berdasarkan Hasil Akhir

Berdasarkan hasil akhir, evolusi dapat dibedakan menjadi dua:

  1. Evolusi Divergen

Evolusi divergen merupakan proses evolusi yang perubahannya berasal dari satu spesies menjadi banyak spesies baru. Evolusi divergen ditemukan pada peristiwa terdapatnya lima jari pada vertebrata yang berasal dari nenek moyang yang sama dan sekarang dimiliki oleh bangsa primata dan manusia.

  1. Evolusi Konvergen

Evolusi konvergen adalah proses evolusi yang perubahannya didasarkan pada adanya kesamaan struktur antara dua organ atau organisme pada garis sama dari nenek moyang yang sama. Hal ini dapat ditemukan pada hiu dan lumba-lumba. Ikan hiu dan lumba-lumba terlihat sama seperti organisme yang berkerabat dekat, tetapi ternyata hiu termasuk dalam pisces, sedangkan ikan lumba-lumba termasuk dalam mamalia. Agar lebih jelas tentang evolusi konvergen, perhatikan Gambar di bawah ini

 

 

 

 

 

Evolusi konvergen dan divergen

 

 

 

 

 

 

 

 

 

 

 

C. MEKANISME EVOLUSI

Proses evolusi dapat terjadi karena variasi genetik dan seleksi alam. Adanya variasi genetik akan memunculkan sifat-sifat baru yang akan diturunkan. Variasi genetik ini disebabkan karena adanya mutasi gen. Seleksi alam juga merupakan mekanisme evolusi. Individu-indivu akan beradaptasi dan berjuang untuk mempertahankan hidupnya, sehingga individu akan mengalami perubahan morfologi, fisiologi, dan tingkah laku. Faktor-faktor yang berpengaruh di dalam mekanisme evolusi antara lain seperti berikut.

  1. Mutasi

Peristiwa mutasi akan mengakibatkan terjadinya perubahan frekuensi gen, sehingga akan mempengaruhi fenotipe dan genotipe. Mutasi dapat bersifat menguntungkan dan merugikan. Sifat menguntungkan maupun merugikan tersebut terjadi jika:

a. dapat menghasilkan sifat baru yang lebih menguntungkan,

b. dapat menghasilkan spesies yang adaptif,

c. memiliki peningkatan daya fertilitas dan viabilitas.

Selain menguntungkan, ada kemungkinan mutasi bersifat merugikan yaitu menghasilkan sifat-sifat yang berkebalikan dengan sifat-sifat di atas. Untuk mengetahui angka laju mutasi, dapat dicontohkan dengan perhitungan seperti berikut:

Jumlah populasi spesies 300.000. Jumlah generasi spesies itu sebesar 6000, sedangkan angka laju mutasi per gen 1 : 100 000. Jumlah gen yang mampu bermutasi dalam individu 1000. Perbandingan mutasi yang menguntungkan dan merugikan 1 : 1000. Berapakah mutasi gen yang menguntungkan selam spesies itu ada?

JAWAB

 

 

 

 

 

 

 

 

 

 

 

 

  1. Seleksi Alam dan Adaptasi

Proses adaptasi akan diikuti dengan proses seleksi. Individu yang memiliki adaptasi yang baik akan dapat mempertahankan hidupnya, memiliki resistensi yang tinggi dan dapat melanjutkan keturunannya. Sedangkan individu yang tidak dapat beradaptasi akan mati selanjutnya akan punah.

  1. Aliran Gen

Dengan adanya aliran gen maka akan terjadi perpindahan alel di antara populasi-populasi melalui migrasi dan individu yang kawin.

  1. Perkawinan yang Tidak Acak

Perkawinan tak acak dapat mengakibatkan alel yang membawa sifat lebih disukai akan menjadi lebih sering dijumpai dalam populasi, sedangkan alel dengan sifat yang tidak disukai akan berkurang dan mungkin akan hilang dari populasi. Perkawinan yang terjadi antar keluarga dekat dapat mengakibatkan frekuensi gen abnormal atau gen resesif.

 

  1. Genetik Drift

Genetik Drift merupakan perubahan secara acak pada frekuensi gen dari populasi kecil yang terisolasi. Keadaan ini dapat Anda jumpai pada populasi terisolir kaum Amish di Amerika, ternyata ada yang membawa alel yang menyebabkan sifat cebol satu dari setiap seribu kelahiran.

Hasil perkawinan secara acak tidak akan mengubah populasi tertentu. Penghitungan populasi secara acak tersebut dapat ditentukan dengan hokum Hardy Weinberg. Hukum Hardy Weinberg menyatakan bahwa frekuensi gen dalam populasi dapat tetap distabilkan dan tetap berada dalam keseimbangan dari satu generasi. Syarat terjadinya prinsip ini adalah:

a. perkawinan secara acak,

b. tidak ada seleksi alam,

c. jumlah populai besar,

d. tidak terjadinya mutasi maju atau surut,

e. tidak ada migrasi.

Secara umum, hukum Hardy Weinberg dapat dirumuskan sebagai berikut.

a. Bila frekuensi alel A di dalam populasi diumpamakan p

b. Frekuensi alel a diumpamakan q

c. Hasil perkawinan heterozigote antara Aa × Aa akan diperoleh hasil sebagai berikut:

1) Homozigot dominan AA = p × p = p2

2) Heterozigot 2 Aa = 2p × q = 2pq

3) Homozigot resesif = aa = q × q = q2

Sehingga persamaan rumusnya adalah:

 

 

 

 

DAFTAR PUSTAKA

Bucaille, M. 1998. Asal-usul Manusia Menurut Bibel, Al Quran dan Sains. Mizan: Jakarta

Bucaille, M. 2003. God After Than, Tuhan Sesudah Darwin. Mizan: Jakarta

Coichen, Russel. 1987. Primate Evolution and Human Origins. Aldine Transaction: New York

Coray, Michael. 2000. Evolution and The Problem Of Natural Evil. Rowman and Littlefiedd. Boston.

Darwin, Charless. 2002. The Origin Of Spesies Asal-usul Spesies. Ikon Teralitera. Yogyakarta

Fabian, A.C. 1998. Evolution: Society, Science, and The Universe. Cambridge University Pers. Cambridge.

Graebner, Theodore. 2008. Evolution. BiblioBazaar. Wahington DC.

Mayr, Ernst. 2002. What Evolutions. Basic Books: California

Ridley, Mark. 2004. Evolution. Wiley-Blackwell. Maldem, USA.

Waluyo, Lud. 2005. Evolusi Organik. UMM Press. Malang.

Wells, Jonathan. 2002. Icons of Evolution Science or Myth? Why Much of What We Teach About Evolution Is Wrong. Regnery Publishing. Washington DC.

Zimmer, Carl. 2002. Evolution: The Trumph of An Idea. Harpercollins. New York

11/15/2009 Posted by | SBB | 29 Komentar

KONSEP DASAR STRATEGI PEMBELAJARAN

Pada handout ini dibahas mengenai hal-hal sebagai berikut:

1     Pengertian Strategi Pembelajaran

2     Model, Pendekatan, Strategi, Metode dan Teknik pembelajaran

3     Klasifikasi Strategi Pembelajaran

4     Komponen Strategi Pembelajaran

5     Strategi Pembelajaran Efektif

 

1.1 Pengertian Strategi Pembelajaran

Pada mulanya istilah strategi digunakan dalam dunia militer dan diartikan sebagai cara penggunaan seluruh kekuatan militer untuk memenangkan suatu peperangan. Seorang yang berperang dalam mengatur strategi, untuk memenangkan peperangan sebelum melakukan suatu tindakan, ia akan menimbang bagaimana kekuatan pasukan yang dimilikinya baik dilihat dari kuantitas maupun kual­itasnya. Setelah semuanya diketahui, baru kemudian ia akan menyusun tindakan yang harus dilakukan, baik tentang siasat peperangan yang harus dilakukan, taktik dan teknik peperangan, maupun waktu yang tepat untuk melakukan suatu serangan. Dengan demikian dalam menyusun strategi perlu memperhitungkan berbagai faktor, baik dari dalam maupun dari luar.

Dari ilustrasi tersebut dapat disimpulkan, bahwa strategi digunakan untuk memperoleh kesuksesan atau keberhasilan dalam mencapai tujuan. Dalam dunia pendidikan, strategi diartikan sebagai a plan, method, or series of activities designed to achieves a particular education goal. Jadi, strategi pembelajaran dapat diartikan sebagai perencanaan yang berisi tentang rangkaian kegiatan yang didesain untuk mencapai tujuan pendidikan tertentu.

Menurut Sanjaya Wina (2007) istilah strategi, sebagaimana banyak istilah lainnya, dipakai dalam banyak konteks dengan makna yang tidak selalu sama. Di dalam konteks belajar-mengajar, strategi berarti pola umum perbuatan guru-peserta didik di dalam perwujudan kegiatan belajar-mengajar. Sifat umum pola tersebut berarti bahwa macam dan urutan perbuatan yang dimaksud tampak dipergunakan dan/atau dipercayakan guru-peserta didik di dalam bermacam-macam peristiwa belajar. Dengan demikian maka konsep strategi dalam hal ini menunjuk pada karakteristik abstrak rentetan perbuatan guru-peserta didik di dalam peristiwa belajar-mengajar. Implisit di balik karakteristik abstrak itu adalah rasional yang membedakan strategi yang satu dari strategi yang lain secara fundamental. istilah lain yang juga dipergunakan untuk maksud ini adalah model-model mengajar. Sedangkan rentetan perbuatan guru-peserta didik dalam suatu peristiwa belajar-mengajar aktual tertentu, dinamakan prosedur instruksional.

Di bawah ini akan diuraikan beberapa definisi tentang strategi pembelajaran.

  • Kemp (1995) menjelaskan bahwa strategi pembelajaran adalah suatu kegiatan pembelajaran yang harus dikerjakan guru dan peserta didik agar tujuan pembelajaran dapat dicapai secara efektif dan efisien.
  • Kozma  (dalam Sanjaya 2007) secara umum menjelaskan bahwa strategi pembelajaran dapat diartikan sebagai setiap kegiatan yang dipilih, yaitu yang dapat memberikan fasilitas atau bantuan kepada peserta didik menuju tercapainya tujuan pembelajaran tertentu.
  • Gerlach dan Ely menjelaskan bahwa strategi pembelajaran merupakan cara-cara yang dipilih untuk menyampaikan materi pembelajaran dalam lingkungan pembelajaran tertentu. Selanjutnya dijabarkan oleh mereka bahwa strategi pembelajaran dimaksud meliputi; sifat, lingkup, dan urutan kegiatan pembelajaran yang dapat memberikan pengalaman belajar kepada peserta didik.
  • Dick dan Carey (1990 dalam Sanjaya, 2007) menjelaskan bahwa strategi pembelajaran terdiri atas seluruh komponen materi pembelajaran dan prosedur atau tahapan kegiatan belajar yang/atau digunakan oleh guru dalam rangka membantu peserta didik mencapai tujuan pembelajaran tertentu. Menurut mereka strategi pembelajaran bukan hanya terbatas pada prosedur atau tahapan kegiatan belajar saja, melainkan termasuk juga pengaturan materi atau paket program pembelajaran yang akan disampaikan kepada peserta didik.
  • Cropper di dalam Wiryawan dan Noorhadi (1998) mengatakan bahwa strategi pembelajaran merupakan pemilihan atas berbagai jenis latihan tertentu yang sesuai dengan tujuan pembelajaran yang ingin dicapai. la menegaskan bahwa setiap tingkah laku yang diharapkan dapat dicapai oleh peserta didik dalam kegiatan belajarnya harus dapat dipraktikkan.

Ada dua hal yang patut dicermati dari pengertian-pengertian di atas. Pertama, strategi pembelajaran merupakan rencana tindakan (rangkaian kegiatan) termasuk penggunaan metode dan pemanfaatan berbagai sumber daya/kekuatan dalam pembelajaran. Ini berarti penyusunan suatu strategi baru sampai pada proses penyusunan rencana kerja belum sampai pada tindakan. Kedua, strategi disusun untuk mencapai tujuan tertentu. Artinya, arah dari semua keputusan penyusunan strategi adalah pencapaian tujuan. Dengan demikian, penyusunan langkah-langkah pembelajaran, pemanfaatan berbagai fasilitas dan sumber belajar semuanya diarahkan dalam upaya pencapaian tujuan. Oleh sebab itu, sebelum menentukan strategi, perlu dirumuskan tujuan yang jelas yang dapat diukur keberhasilannya, sebab tujuan adalah rohnya dalam implementasi suatu strategi.

Strategi pembelajaran berbeda dengan desain instruksional karena strategi pembelajaran berkenaan dengan kemungkinan variasi pola dalam arti macam dan urutan umum per­buatan belajar-mengajar yang secara prinsip berbeda antara yang satu dengan yang lain, sedangkan desain instruksional menunjuk kepada cara-cara merencanakan sesuatu sistem lingkungan belajar tertentu, setelah ditetapkan untuk menggunakan satu atau lebih strategi pembelajaran tertentu. Kalau disejajarkan dengan pembuatan rumah, pembicaraan tentang (bermacam-macam) strategi pembelajaran adalah ibarat melacak pelbagai kemungkinan macam rumah yang akan dibangun (joglo, rumah gadang, villa, bale gede, rumah gedung modern, dan sebagainya yang masing-masing menampilkan kesan dan pesan unik), sedang­kan desain instruksional adalah penetapan cetak biru rumah yang akan dibangun itu serta bahan-bahan yang diperlukan dan urutan langkah-langkah konstruksinya maupun kriteria penyelesaian dari tahap ke tahap sampai dengan penyelesaian akhir, setelah ditetapkan tipe rumah yang akan dibuat.

Dari uraian di atas, jelaslah bahwa untuk dapat melaksanakan tugas secara profesional, seorang guru memerlukan wawasan yang mantap tentang kemungkinan­-kemungkinan strategi pembelajaran sesuai dengan tujuan-tujuan belajar, baik dalam arti efek instruksional maupun efek pengiring, yang ingin dicapai berdasarkan rumusan tujuan pendidikan yang utuh, di samping penguasaan teknis di dalam mendesain sistem lingkungan belajar-mengajar dan mengimplementasikan secara efektif apa yang telah direncanakan di dalam desain instruksional.

Ceramah, diskusi, bermain peran, LCD, video-tape, karya wisata, penggunaan nara sumber, dan lain-lainnya merupakan metode, teknik dan alat yang menjadi bagian dari perangkat alat dan cara di dalam pelaksanaan sesuatu strategi pembelajaran. Juga harus dicatat bahwa dalam peristiwa pembelajaran, seringkali harus dipergunakan lebih dari satu stra­tegi, karena tujuan-tujuan yang akan dicapai juga biasanya kait-mengait satu dengan yang lain dalam rangka usaha pencapaian tujuan yang lebih umum.

Agar tidak bias dalam mendefinisikan strategi pembelajaran, dibutuhkan pemahaman terhadap pengertian-pengertian lain yang mirip dengan strategi pembelajaran yang selalu digunakan seperti model, pendekatan, strategi, metode dan teknik. Dalam referensi kependidikan sering disandingkan antara pengertian-pengertian tersebut dengan maksud yang serupa, namun dalam bahan perkuliahan ini akan diuraikan perbedaan antara model, pendekatan, strategi, metode dan teknik pembelajaran,

1.2 Model,Pendekatan, Strategi,metode dan teknik pembelajaran

Arends (1997) menyatakan “The term teaching model refers to a particular approach to instruction that includes its goals, syntax, environment, and management ystem.” Istilah model pengajaran mengarah pada suatu pendekatan pembelajaran tertentu termasuk tujuannya, sintaksnya, lingkungan, dan sistem pengelolaannya, sehingga model pembelajaran mempunyai makna yang lebih luas daripada pendekatan, strategi, metode atau prosedur. Model pembelajaran adalah suatu perencanaan atau suatu pola yang digunakan sebagai pedoman dalam merencanakan pembelajaran di kelas atau pembelajaran dalam tutorial dan untuk menentukan perangkat-perangkat pembelajaran termasuk di dalamnya buku-buku, film, komputer, kurikulum, dan lain-lain (Joyce, 1992 ). Selanjutnya Joyce menyatakan bahwa setiap model pembelajaran mengarah kepada desain pembelajaran untuk membantu peserta didik sedemikian rupa sehingga tujuan pembelajaran tercapai.

 

Soekamto, dkk (dalam Nurulwati, 2000) mengemukakan maksud dari model pembelajaran adalah: “Kerangka konseptual yang melukiskan prosedur yang sistematis dalam mengorganisasikan pengalaman belajar untuk mencapai tujuan belajar tertentu dan berfungsi sebagai pedoman bagi para perancang pembelajaran dan para pengajar dalam merencanakan aktivitas belajar mengajar.” Hal ini sejalan dengan apa yang dikemukakan oleh Eggen dan Kauchak bahwa model pembelajaran memberikan kerangka dan arah bagi guru untuk mengajar.

 

Model pembelajaran mempunvai empat ciri khusus yang membedakan dengan strategi, metode atau prosedur. Ciri-ciri tersebut ialah:

  1. rasional teoritik logis yang disusun oleh para pencipta atau pengembangnya;
  2. landasan pemikiran tentang apa dan bagaimana peserta didik belajar (tujuan pembelajaran yang akan dicapai);
  3. tingkah laku pembelajaran yang diperlukan agar model tersebut dapat dilaksanakan dengan berhasil; dan lingkungan belajar yang diperlukan agar tujuan pembelajaran itu dapat tercapai (Kardi dan Nur, 2000 ).

 

Adapun istilah  pendekatan (approach) dalam pembelajaran menurut Sanjaya (2007) memiliki kemiripan dengan strategi. Sebenarnya pendekatan berbeda baik dengan strategi dan metode. Pendekatan dapat diartikan sebagai titik tolak atau sudut pandang kita terhadap proses pembelajaran. Istilah pendekatan merujuk pada pandangan tentang terjadinya proses yang sifatnya masih sangat umum. Oleh karenanya, strategi dan metode pembelajaran yang digunakan dapat bersumber dari pendekatan tertentu. Roy Killen (1998) misal­nya mencatat ada dua pendekatan dalam pembelajaran, yaitu pendekatan yang berpusat pada guru (teacher-centred approaches) dan pendekatan yang berpusat pada siswa (student-centred approaches). Pendekatan yang berpusat pada guru menurunkan strategi pembelajaran lang­sung (direct instruction), pembelajaran deduktif atau pembelajaran ekspositori. Sedangkan, pendekatan pembelajaran yang berpusat pada siswa menurunkan strategi pembelajaran discovery dan inkuiri serta strategi pembelajaran induktif.

 

Menurut Fathurrahman Pupuh (2007) metode secara harfiah berarti cara. Dalam pemakaian yang umum, metode diartikan sebagai suatu cara atau prosedur yang dipakai untuk mencapai tujuan tertentu. Dalam kaitannya dengan pembelajaran, metode didefinisikan sebagai cara-cara menyajikan bahan pelajara pada peserta didik untuk tercapainya tujuan yang telah ditetapkan. Dengan demikian, salah satu keterampilan yang harus dimiliki oleh seorang guru dalam pembelajaran adalah keterampilan memilih motode. Pemilihan metode terkait langsung dengan usaha-usaha guru dalam menampilkan pengajaran yang sesuai dengan situasi dan kondisi sehingga pencapaian tujuan pengajaran diperoleh secara optimal. Oleh karena itu, salah satu hal yang sangat mendasar untuk dipahami guru adalah bagaimana memahami kedudukan metode sebagai salah satu komponen bagi keberhasilan kegiatan belajar-mengajar sama pentingnya dengan komponen-komponen lain dalam keseluruhan komponen pendidikan.

 

Makin tepat metode yang digunakan oleh guru dalam mengajar akan semakin efektif kegiatan pembelajaran. Tentunya ada juga faktor-faktor lain yang harus diperhatikan, seperti: faktor guru, anak, situasi (lingkungan belajar), media, dan  lain-lain.

 

Selain strategi, metode, dan pendekatan pembelajaran, terdapat istilah lain yang kadang-kadang sulit dibedakan, yaitu teknik dan taktik mengajar. Teknik dan taktik mengajar merupakan pen­jabaran dari metode pembelajaran. Teknik adalah cara yang dilakukan ­orang dalam rangka mengimplementasikan suatu metode, yaitu cara yang harus dilakukan agar metode yang dilakukan berjalan efektif dan efisien. Dengan demikian, sebelum seseorang melakukan proses ceramah sebaiknya memperhatikan kondisi dan situasi. Misalnya, berceramah pada siang hari dengan jumlah peserta didik yang banyak tentu saja akan berbeda jika dilakukan pada pagi hari dengan jumlah peserta didik yang sedikit.

Taktik adalah gaya seseorang dalam melaksanakan suatu teknik atau metode tertentu. Dengan demikian, taktik sifatnya lebih individual. Misalnya ada dua orang yang sama-sama menggunkan metode ceramah dalam situasi yang sama maka bisa dipastian mereka akan melakukannya secara berbeda .

Dari paparan di atas, dapat disimpulkan bahwa strategi pembelajaran yang diterapkan oleh guru akan tergantung pada pendekatan yang digunakan; sedangkan bagaimana menjalankan strategi itu dapat diterapkan berbagai metode pembelajaran. Dalam upaya menjalankan metode pembelajaran, guru dapat menentukan teknik yang dianggap relevan dengan metode, dan penggunaan teknik itu setiap guru memiliki taktik yang mungkin berbeda antara guru yang satu dengan yang lain.

1.3 Klasifikasi Strategi Pembelajaran

Strategi dapat diklasifikasikan menjadi 4, yaitu: strategi pembelajaran langsung (direct instruction), tak langsung (indirect instruction), interaktif, mandiri, melalui pengalaman (experimental).

 

Strategi pembelajaran langsung

Strategi pembelajaran langsung merupakan pembelajaran yang banyak diarahkan oleh guru. Strategi ini efektif untuk menentukan informasi atau membangun keterampilan tahap demi tahap. Pembelajaran langsung biasanya bersifat deduktif.

 

Kelebihan strategi ini adalah mudah untuk direncanakan dan digunakan, sedangkan kelemahan utamanya dalam mengembangkan kemampuan-kemampuan, proses-proses, dan sikap yang diperlukan untuk pemikiran kritis dan hubungan interpersonal serta belajar kelompok. Agar peserta didik dapat mengembangkan sikap dan pemikiran kritis, strategi pembelajaran langsung perlu dikombinasikan dengan strategi pembelajaran yang lain.

 

Strategi pembelajaran tak langsung

Strategi pembelajaran tak langsung sering disebut inkuiri, induktif, pemecahan masalah, pengambilan keputusan dan penemuan. Berlawanan dengan strategi pembelajaran langsung, pembelajaran tak langsung umumnya berpusat pada peserta didik, meskipun dua strategi tersebut dapat saling melengkapi. Peranan guru bergeser dari seorang penceramah menjadi fasilitator. Guru mengelola lingkungan belajar dan  memberikan kesempatan peserta didik  untuk terlibat.

 

Kelebihan dari strategi ini antara lain: (1) mendorong ketertarikan dan keingintahuan peserta didik, (2) menciptakan alternatif dan menyelesaikan masalah, (3) mendorong kreativitas dan pengembangan keterampilan interpersonal dan kemampuan yang

lain, (4) pemahaman yang lebih baik, (5) mengekspresikan pemahaman. Sedangkan kekurangan dari pembelajaran ini adalah memerlukan waktu panjang, outcome sulit diprediksi. Strategi pembelajaran ini juga tidak cocok apabila peserta didik  perlu mengingat materi dengan cepat.

 

Strategi pembelajaran interaktif

Pembelajaran interaktif menekankan pada diskusi dan sharing di antara peserta didik. Diskusi dan sharing memberi kesempatan peserta didik untuk bereaksi terhadap gagasan, pengalaman, pendekatan dan pengetahuan guru atau temannya dan untuk membangun cara alternatif untuk berfikir dan merasakan.

Kelebihan strategi ini antara lain: (1) peserta didik dapat belajar dari temannya dan guru untuk membangun keterampilan sosial dan kemampuan-kemampuan, (2) mengorganisasikan pemikiran dan membangun argumen yang rasional. Strategi pembelajaran interaktif memungkinkan untuk menjangkau kelompokkelompok

dan metode-metode interaktif. Kekurangan dari strategi ini  sangat bergantung pada kecakapan guru dalam menyusun dan mengembangkan dinamika kelompok.

 

Strategi pembelajaran empirik (experiential)

Pembelajaran empirik berorientasi pada kegiatan induktif, berpusat pada peserta didik, dan berbasis aktivitas. Refleksi pribadi tentang pengalaman dan formulasi

perencanaan menuju penerapan pada konteks yang lain merupakan faktor kritis

dalam pembelajaran empirik yang efektif.

 

Kelebihan dari startegi ini antara lain: (1) meningkatkan partisipasi peserta didik, (2) meningkatkan sifat kritis peserta didik, (3) meningkatkan analisis peserta didik, dapat menerapkan pembelajaran pada situasi yang lain. Sedangkan kekurangan dari strategi ini adalah penekanan hanya pada proses bukan pada hasil, keamanan siswa, biaya yang mahal, dan memerlukan waktu yang panjang.

 

Strategi pembelajaran mandiri

Belajar mandiri merupakan strategi pembelajaran yang bertujuan untuk

membangun inisiatif individu, kemandirian, dan peningkatan diri. Fokusnya

adalah pada perencanaan belajar mandiri oleh peserta didik dengan bantuan guru. Belajar

mandiri juga bisa dilakukan dengan teman atau sebagai bagian dari kelompok

kecil.

 

Kelebihan dari pembelajaran ini adalah membentuk peserta didik yang mandiri dan bertanggunggjawab. Sedangkan kekurangannya adalah peserta MI belum dewasa, sehingga sulit menggunakan pembelajaran mandiri.

 

Karakteristik dan cara penggunaan macam-macam strategi di atas, akan dibahas tuntas pada pertemuan-pertemuan selanjutnya. Strategi yang akan dibahas telah dimodivikasi sesuai yang banyak diperlukan dalam pembelajaran di Mi, yaitu: pada paket 5, dibahas tentang strategi pembelajaran langsung (direct instruction), paket 6,  strategi pembelajaran tak langsung (indirect instruction) yang diberi judul dengan startegi pembelajaran inkuiri , paket 7, strategi pembelajaran berbasis masalah (SPBM), paket 8, strategi pembelajaran kooperatf (Cooperative Learning), paket 8, strategi pembelajaran aktif, dan paket 9, strategi pembelajaran peningkatan kemampuan berfikir

1.4 Komponen Strategi Pembelajaran

Pembelajaran merupakan suatu sistem instruksional yang mengacu pada seperangkat komponen yang saling bergantung satu sama lain untuk mencapai tujuan. Selaku suatu sistem, pembelajaran meliputi suatu komponen, antara lain tujuan, bahan, peserta didik, guru, metode, situasi, dan evaluasi. Agar tujuan itu tercapai, semua komponen yang ada harus diorganisasikan sehingga antarsesama komponen terjadi kerja sama. Oleh karena itu, guru tidak boleh hanya memperhatikan komponen-komponen tertentu saja misalnya metode, bahan, dan evaluasi saja, tetapi ia harus mempertimbangkan komponen secara keseluruhan.

Guru

Guru adalah pelaku pembelajaran, sehingga dalam hal ini guru merupakan faktor yang terpenting. Di tangan gurulah sebenarnya letak keberhasilan pembelajaran. Komponen guru tidak dapat dimanipulasi atau direkayasa oleh komponen lain, dan sebaliknya guru mampu memanipulasi atau merekayasa  komponen lain menjadi bervariasi. Sedangkan komponen lain tidak dapat mengubah guru menjadi bervariasi. Tujuan rekayasa pembelajaran oleh guru adalah membentuk lingkungan peserta didik supaya sesuai dengan lingkungan yang diharapkan dari proses belajar peserta didik, yang pada akhirnya peserta didik memperoleh suatu hasil belajar sesuai dengan yang diharapkan. Untuk itu, dalam merekayasa pembelajaran, guru harus berdasarkan kurikulum yang berlaku.

Peserta didik

Peserta didik merupakan komponen yang melakukan kegiatan belajar untuk mengembangkan potensi kemampuan menjadi nyata untuk mencapai tujuan belajar. Komponen peserta ini dapat dimodifikasi oleh guru.

Tujuan

Tujuan merupakan dasar yang dijadikan  landasan untuk menentukan strategi, materi, media dan evaluasi pembelajaran. Untuk itu, dalam strategi pembelajaran, penentuan tujuan merupakan komponen yang pertama kali harus dipilih oleh seorang guru, karena tujuan pembelajran merupakan target yang ingin dicapai dalam kegiatan pembelajaran

Bahan Pelajaran

Bahan pelajaran merupakan medium untuk mencapai tujuan pembelajaran yang berupa materi yang tersusun secara sistematis dan dinamis sesuai dengan arah tujuan dan perkembangan kemajuan ilmu pengetahuan dan tuntutan masyarakat. Menurut Suharsimi (1990) bahan ajar merupakan komponen inti yang terdapat dalam kegiatan pembelajaran.

Kegiatan pembelajaran

Agar tujuan pembelajaran dapat dicapai secara optimal, maka dalam menentukan strategi pembelajaran perlu dirumuskan komponen kegiatan pembelajaran yang sesuai dengan standar proses pembelajaran.

Metode

Metode adalah satu cara yang dipergunakan untuk mencapai tujuan pembelajaran yang telah ditetapkan. Penentuan metode yang akan digunakan oleh guru dalam proses pembelajaran akan sangat menentukan berhasil atau tidaknya pembelajaran yang berlangsung.

 

Alat

Alat yang dipergunakan dalam pembelajran merupakan segala sesuatu yang dapat digunakan dalam rangka mencapai tujuan pembelajaran. Dalam proses pembelajaran alat memiliki fungsi sebagai pelengkap untuk mencapai tujuan. Alat dapat dibedakan menjadi dua, yaitu alat verbal dan alat bantu nonverbal. Alat verbal dapat berupa suruhan, perintah, larangan dan lain-lain, sedangkan yang nonverbal dapat berupa globe, peta, papan tulis slide dan lain-lain.

Sumber Pembelajaran

Sumber pembelajaran adalah segala sesuatu yang dapat dipergunakan sebagai tempat atau rujukan di mana bahan pembelajaran bisa diperoleh. Sehingga sumber belajar dapat berasal dari masyarakat, lingkungan, dan kebudayaannya, misalnya, manusia, buku, media masa, lingkungan, museum, dan lain-lain.

Evaluasi

Komponen evaluasi merupakan komponen yang berfungsi untuk mengetahui apakah tujuan yang telah ditetapkan telah tercapai atau belum, juga bisa berfungsi sebagai sebagai umpan balik untuk perbaikan strategi yang telah ditetapkan. Kedua fungsi evaluasi tersebut merupakan evaluasi sebagai fungsi sumatif dan formatif.

Situasi atau Lingkungan

Lingkungan sangat mempengaruhi guru dalam menentukan strategi pembelajaran. Lingkungan yang dimaksud adalah situasi dan keadaan fisik (misalnya iklim, madrasah, letak madrasah, dan lain sebagainya), dan hubungan antar insani, misalnya dengan teman, dan peserta didik dengan orang lain. Contoh keadaan ini misalnya menurut isi materinya seharusnya pembelajaran menggunakan media masyarakat untuk pembelajaran, karena kondisi masyarakat sedang rawan, maka diubah dengan menggunakan metode lain, misalnya membuat kliping.

 

Komponen-komponen strategi pembelajaran tersebut akan mempengaruhi jalannya pembelajaran, untuk itu semua komponen strategi pembelajaran merupakan faktor yang berpengaruh terhadap strategi pembelajaran. Untuk lebih mempermudah menganalisis faktor yang berpengaruh terhadap strategi pembelajaran, komponen strategi pembelajaran dapat dikelompokkan menjadi tiga, yaitu: peserta didik sebagai raw input, entering behavior peserta didik, dan instrumental input atau sasaran.

 

Peserta didik sebagai raw input.

Strategi pembelajaran digunakan dalam rangka membelajarkan peserta didik. Untuk itu dalam pembelajaran seorang guru harus memperhatikan siapa yang dihadapi. Peserta didik pada tingkat sekolah yang sama cenderung memiliki umur yang sama, sehingga perkembangan intelektual pada umumnya adalah sama. Dipandang dari kesamaan ini, maka seorang guru dapat menggunakan metode atau teknik yang sama dalam membelajarkan peserta didik. Namun demikian di samping persamaan tersebut, peserta masih mempunyai perbedaan-perbedaan walaupun pada umur yang relatif sama.

 

Perbedaan peserta didik tersebut dari segi fisiologisnya adalah pendengaran, penglihatan, kondisi fisik, juga perbedaan dari segi psikologisnya. Perbedaan segi psikologis tersebut antara lain adalah IQ, bakat, motivasi, minat/perhatian, kematangan, kesiapan, dan masih banyak lagi. Kondisi-kondisi tersebut sangat mempengaruhi peserta didik dalam belajar. Untuk itu, dalam menentukan strategi pembelajaran harus diperhatikan hal-hal di atas.

 

Pertimbangan yang perlu diperhatikan dalam menghadapi heterogenitas peserta dalam kelas yang sama adalah seorang guru disarankan untuk menggunakan multimetode dan multimedia. Hal ini disebabkan masing-masing metode dan media mempunyai kelebihan dan kekurangan, dan dimungkinkan masing-masing peserta didik akan mempunyai kecenderungan tertarik pada metode dan media tertentu.

Entering Behavior Peserta Didik

Seorang pendidik untuk dapat menentukan strategi pembelajaran yang sesuai  terlebih dahulu harus mengetahui  perubahan perilaku, baik secara material-subtansial, struktural-fungsional, maupun secara behavior peserta didik. Misalnya, apakah tingkat prestasi yang dicapai peserta didik itu merupakan hasil kegiatan belajar mengajar yang bersangkutan?. Untuk kepastiannya seharusnya guru mengetahui tentang karakteristik perilaku peserta didik saat mereka mau masuk sekolah dan saat kegiatan belajar mengajar dilangsungkan, tingkat dan jenis karakteristik perilaku peserta didik yang dimilikinya ketika mau mengikuti kegiatan belajar mengajar. Itulah yang dimaksudkan dengan entering behavior peserta didik.

Entering bahavior akan dapat diidentifikasi dengan cara sebagai berikut:

  • Secara tradisional, telah lazim para guru mulai dengan pertanyaan mengenai bahan yang pernah diberikan sebelum menyajikan bahan baru.
  • Secara inovatif, guru tertentu di berbagai lembaga pendidikan yang memiliki atau mampu mengembangkan instrumen pengukuran prestasi belajar dengan memenuhi syarat, mengadakan pretes sebelum mereka mulai mengikuti program belajar mengajar.

Pola-pola Belajar Peserta Didik

Mengetahui pola belajar peserta didik adalah modal bagai seorang guru untuk menentukan strategi pembelajaran. Robert M. Gagne (1979) membedakan pola-pola belajar peserta didik ke dalam delapan tipe, yang tiap tipe merupakan prasyarat bagi lainnya yang lebih tinggi hierarkinya. Delapan tipe belajar dimaksud adalah: 1) signal , (belajar isyarat), 2) stimulus-response learning (belajar stimu­pons), 3) chaining (rantai atau rangkaian), 4) verbal association,(asosiasi verbal), 5) discrimination learning (belajar diskriminasi), 6) concept learning (belajar konsep), 7) rule learning (belajar aturan), problem solving (memecahkan masalah).

Kedelapan tipe belajar sebagaimana disebutkan di atas akan dijelaskan satu per satu secara singkat dan jelas sebagai berikut.

Belajar Tipe 1: Signal Learning (Belajar Isyarat)

Belajar tipe ini merupakan tahap yang paling dasar. Jadi, tidak ada persyaratan, namun merupakan hierarki yang harus dilalui untuk menuju jenjang belajar yang paling tinggi. Signal learning dapat diartikan sebagai penguasaan pola-pola dasar perilaku bersifat involuntary ( tidak sengaja dan tidak disadari tujuannya). Dalam tipe ini terlibat aspek reaksi emosional di dalamnya. Kondisi yang diperlukan untuk berlangsungnya tipe belajar ini adalah diberikannya stimulus (signal) secara serempak dan  perangsang-perangsang tertentu secara berulang kali. Signal learning. Ini mirip dengan conditioning menurut Pavlov yang timbul setelah sejumlah pengalaman tertentu. Respon yang timbul bersifat umum dan emosional selain timbulnya dengan tidak sengaja dan tidak dapat dikuasai. Contoh: Aba-aba “Siap!” merupakan suatu signal atau isyarat mengambil sikap tertentu. Melihat wajah ibu menimbulkan rasa senang. Wajah ibu di sini merupakan isyarat yang menimbulkan perasaan senang itu. Melihat ular yang besar menimbulkan rasa takut. Melihat ular merupakan isyarat yang menimbulkan perasaan tertentu.

Belajar Tipe 2: Stimulus-Respons Learning (Belajar Stimulus­-respon)

Bila tipe di atas digolongkan dalam jenis classical condition, maka belajar 2 ini termasuk ke dalam instrumental conditioning atau belajar dengan trial and error (mencoba-coba). Proses belajar bahasa pada anak-anak merupakan proses yang serupa dengan ini. Kondisi yang diperlukan untuk berlangsungnya tipe belajar ini adalah faktor inforcement. Waktu antara stimulus pertama dan berikutnya amat penting. Makin singkat jarak S-R dengan S-R berikutnya, semakin kuat reinforce­ment.

Contoh: Anjing dapat diajar “memberi’ salam”.dengan mengangkat kaki depannya bila kita katakan “Kasih tangan! ” atau “Salam “. Ucapan `kasih tangan’ merupakan stimulus yang menimbulkan respons `memberi’ salam’ oleh anjing itu.

Belajar Tipe 3: Chaining (Rantai atau Rangkaian)

Chaining adalah belajar menghubungkan satuan ikatan S-R (Stimu­lus-Respons) yang satu dengan yang lain. Kondisi yang diperlukan bagi berlangsungnya tipe belajar ini antara lain, secara internal anak didik sudah harus terkuasai sejumlah satuan pola S-R, baik psikomotorik maupun verbal. Selain itu prinsip kesinambungan, pengulangan, dan reinforce­ment tetap penting bagi berlangsungnya proses chaining.

Contoh: Dalam bahasa kita banyak contoh chaining seperti ibu-bapak, kampung-halaman, selamat tinggal, dan sebagainya. Juga dalam perbuatan kita banyak terdapat chaining ini, misalnya pulang kantor, ganti baju, makan malam, dan sebagainya. Chain­ing terjadi bila terbentuk hubungan antara beberapa S-R, sebab yang terjadi segera setelah yang satu lagi. Jadi berdasarkan hubungan conntiguity).

Belajar Tipe 4. Verbal Association (Asosiasi Verbal)

Baik chaining maupun verbal association, yang kedua tipe belajar ini,  menghubungkan satuan ikatan S-R yang satu dengan lain. Bentuk verbal association yang paling sederhana adalah bila diperlihatkan suatu bentuk geometris, dan si anak dapat mengatakan “bujur sangkar”, atau mengatakan “itu bola saya”, bila melihat bolanya. Sebelumnya, ia harus dapat membedakan bentuk geometris agar dapat mengenal `bujur sangkar’ sebagai salah satu bentuk geometris, atau mengenal ‘bola’, `saya’, dan ‘itu’. Hubungan itu terbentuk, bila unsur­nya terdapat dalam urutan tertentu, yang satu segera mengikuti satu lagi (conntiguity).

Belajar Tipe 5: Discrimination Learning (Belajar Diskriminasi)

Discrimination learning atau belajar membedakan. Tipe ini peserta didik mengadakan seleksi dan pengujian di antara­ perangsang atau sejumlah stimulus yang diterimanya, kemudian memilih pola-pola respons yang dianggap paling sesuai. Kondisi utama berlangsung proses belajar ini adalah anak didik sudah mempunyai pola aturan melakukan chaining dan association serta pengalaman (pola S-R)

Contoh:. Guru mengenal peserta didik serta nama masing-masing karena mampu mengadakan diskriminasi di antara anak ­itu. Diskriminasi didasarkan atas chain. Anak misalnya harus mengenal mobil tertentu berserta namanya. Untuk mengenal model lain diadakannya chain baru  dengan kemungkinan yang satu akan mengganggu yang satunya lagi. Makin banyak yang dirangkaikan, makin besar kesulitan yang dihadapi, karena kemungkinan gangguan atau interference itu, dan kemungkinan suatu chain dilupakan.

Belajar Tipe 6: Concept Learning (Belajar Konsep)

Concept learning adalah belajar pengertian. Dengan berdasarkan kesamaan ciri-ciri dari sekumpulan stimulus dan objek-objeknya, ia membentuk suatu pengertian atau konsep. Kondisi utama yang diperlukan adalah menguasai kemahiran diskriminasi dan proses kognitif fundamen­tal sebelumnya.

Belajar konsep dapat dilakukan karena kesanggupan manusia untuk mengadakan representasi internal tentang dunia sekitarnya dengan menggunakan bahasa. Manusia dapat melakukannya tanpa batas berkat bahasa dan kemampuannya mengabstraksi. Dengan menguasai konsep, ia dapat menggolongkan dunia sekitarnya menurut konsep itu, misalnya menurut warna, bentuk, besar, jumlah, dan sebagainya. la dapat menggolongkan manusia menurut hubungan keluarga, seperti bapak, ibu, paman, saudara, dan sebagainya; menurut bangsa, pekerjaan, dan sebagainya. Dalam hal ini, kelakuan manusia tidak dikuasai oleh stimulus dalam bentuk fisik, melainkan dalam bentuk yang abstrak. Misalnya kita dapat menyuruh peserta didik dengan perintah: “Ambilkan botol yang di tengah! ” Untuk mempelajari suatu konsep, peserta didik harus mengalami berbagai situasi dengan stimulus tertentu. Untuk itu, ia harus dapat mengadakan diskriminasi untuk membedakan apa yang termasuk dan tidak termasuk konsep itu. Proses belajar konsep memakan waktu dan berlangsung secara berangsur-angsur.

Belajar Tipe 7: Rule Learning (Belajar Aturan)

Rule learning belajar membuat generalisasi, hukum, dan kaidah. Pada tingkat ini peserta didik belajar mengadakan kombinasi berbagai konsep dengan mengoperasikan kaidah-kaidah logika formal (induktif, dedukatif, sintesis, asosiasi, diferensiasi, komparasi, dan kausalitas) sehingga peserta didik dapat menemukan konklusi tertentu yang mungkin selanjutnya dipandang sebagai “rule “: prinsip, daliI, aturan, hukum, kaidah, dan sebagainya.

Belajar Tipe 8: Problem Solving (Pemecahan Masalah)

Problem solving adalah belajar memecahkan masalah. Pada tingkat ini para peserta didik belajar merumuskan memecahkan masalah, memberikan respons terhadap rangsangan yang menggambarkan atau membangkitkan situasi problematik, yang mempergunakan berbagai kaidah yang telah dikuasainya. Belajar memecahkan masalah itu berlangsung sebagai berikut: Individu menyadari masalah bila ia dihadapkan kepada situasi keraguan dan kekaburan sehingga merasakan adanya semacam kesulitan. Langkah-langkah yang memecahkan masalah, adalah sebagai berikut:

Merumuskan dan Menegaskan Masalah

Individu melokalisasi letak sumber kesulitan, untuk memungkinkan mencari jalan pemecahannya. la menandai aspek mana yang mungkin dipecahkan dengan menggunakan prinsip atau dalil serta kaidah yang diketahuinya sebagai pegangan.

Mencari Fakta Pendukung dan Merumuskan Hipotesis

Individu menghimpun berbagai informasi yang relevan termasuk pengalaman orang lain dalam menghadapi pemecahan masalah yang serupa. Kemudian mengidentifikasi berbagai alternatif kemungkinan pemecahannya yang dapat dirumuskan sebagai pertanyaan dan jawaban sementara yang memerlukan pembuktian (hipotesis).

Mengevaluasi Alternatif Pemecahan yang Dikembangkan

Setiap alternatif pemecahan ditimbang dari segi untung ruginya. Selanjutnya dilakukan pengambilan keputusan memilih alternatif yang dipandang paling mungkin (feasible) dan menguntungkan.

Mengadakan Pengujian atau Verifikasi

Mengadakan pengujian atau verifikasi secara eksperimental alternatif pemecahan yang dipilih, dipraktikkan, atau dilaksanakan. Dari hasil pelaksanaan itu diperoleh informasi untuk membuktikan benar atau tidaknya yang telah dirumuskan.

 

Instrumental Input atau Sasaran

Instrumental input menunjukkan kualifikasi serta kelengkapan sarana dan prasarana yang diperlukan untuk berlangsungnya proses pembelajaran. Yang termasuk dalam instrumental input antara lain guru, kurikulum, bahan/sumber, metode, dan media.

Keberadaan instrumental input ini sangat mempengaruhi dalam menentukan strategi pembelajaran. Misalnya secara teoritis, dipandang dari tujuannya maka suatu materi harus disajikan dengan menggunakan metode laboratorium, namun karena tidak adanya media di sekolah tersebut, maka diganti dengan metode demonstrasi atau yang lainnya.

Strategi pembelajaran yang dterapkan oleh guru akan selalu bergantung pada  sasaran atau tujuan. Tujuan itu bertahap dan berjenjang mulai dari yang sangat operasional dan  konkrit, yakni Tujuan Instruksional Khusus dan Tujuan Instruksional Umum, tujuan kurikuler, tujuan nasional, sampai kepada tujuan yang bersifat universal.

Persepsi guru atau persepsi anak didik mengenai sasaran akhir kegiatan pelajaran  akan mempengaruhi persepsi mereka terhadap sasaran-antara serta sasaran-kegiatan. Sasaran itu harus diterjemahkan ke dalam ciri-ciri perilaku kepribadian yang didambakan tersebut harus memiliki kualifikasi: a) pengembangan bakat secara, optimal, b) hubungan antarmanusia, c) efisiensi ekonomi, dan d) tanggung jawab warga selaku warga negara.

Pandangan hidup para guru maupun peserta didik akan turut mewarnai berkenaan dengan gambaran karakteristik sasaran manusia idaman. Konsekuensinya akan mempengaruhi juga kebijakan tentang perencanaan, pengorganisasian, serta  penilaian terhadap kegiatan belajar mengajar.

 

Enviromental Input ( Lingkungan).

Lingkungan sangat mempengaruhi guru di dalam menentukan strategi belajar- mengajar. Lingkungan yang dimaksud adalah situasi dan keadaan fisik (misalnya iklim, sekolah, letak sekolah, dan lain sebagainya), dan hubungan antar insani, misalnya dengan teman, dan peserta didik dengan orang lain. Contoh keadaan ini misalnya seharusnya menurut isi materinya seharusnya menggunakan media masyarakat untuk pembelajaran, karena kondisi masyarakat sedang rawan, maka diubah dengan menggunakan metode lain, misalnya membuat kliping.

Proses belajar mengajar adalah suatu aspek dari lingkungan sekolah yang diiorganisasi. Lingkungan ini diatur serta diawasi agar kegiatan belajar terarah sesuai dengan tujuan pendidikan. Pengawasan itu turut menentukan lingkungan dalam membantu kegiatan belajar. Lingkungan belajar yang baik adalah lingkungan yang menantang dan merangsang para peserta didik belajar, memberikan rasa aman dan kepuasan serta mencapai tujua yang diharapkan. Salah satu faktor yang mendukung kondisi belajar  di dalam suatu kelas adalah job description proses belajar mengajar yang berisi serangkaian pengertian peristiwa belajar yang dilakukan oleh kelompok-kelompok peserta didik. Sehubungan dengan hal ini, job description guru dalam implementasi proses belajar- mengajar sebagai berikut.

  • · Perencanaan instruksional, yaitu alat atau media untuk mengarahkan kegiatan-kegiatan organisasi belajar.
  • Organisasi belajar yang merupakan usaha menciptakan wadah dan fasilitas-fasilitas atau lingkungan yang sesuai dengan kebutuhan yang mengandung kemungkinan terciptanya proses belajar mengajar. Menggerakkan anak didik yang merupakan usaha memancing, membangkitkan, dan mengarahkan motivasi belajar peserta didik.
  • Supervisi dan pengawasan, yakni usaha mengawasi, menunjang, manbantu, mengaskan, dan mengarahkan kegiatan belajar mengajar sesuai dengan perencanaan instruksional yang telah didesain sebelumnya.
  • Penelitian yang lebih bersifat penafsiran penilaian yang mendukung pengertian  lebih luas dibanding dengan pengukuran atau evaluasi pendidikan.

 

1.5 Strategi Pembelajaran efektif

Pengertian strategi pembelajaran efektif adalah prinsip memilih hal-hal yang harus diperhatikan dalam menggunakan strategi pembelajaran. Prinsip umum penggunaan strategi pembelajaran adalah bahwa tidak semua strategi pembelajaran cocok digunakan untuk mencapai semua tujuan dan semua keadaan. Setiap strategi memiliki kekhasan sendiri-sendiri. Hal ini seperti yang dikemukakan oleh Killen (1998): No teaching strategy is better than others in all circumstances, so you have to be able to use a variety of teaching strategies, and make rational decisions about when each of the teaching strategies is likely to most effective.

Apa yang dikemukakan Killen itu jelas bahwa guru harus mampu memilih strategi yang dianggap cocok dengan keadaan. Oleh sebab itu, guru perlu memahami prinsip-prinsip umum penggunaan strategi pembelajaran sebagai berikut.

Berorientasi pada Tujuan

Segala aktivitas guru dan peserta didik, mestinya diupayakan untuk mencapai tujuan yang telah ditentukan. Ini sangat penting, sebab mengajar adalah proses yang bertujuan. Oleh karena keberhasilan suatu strategi pembelajaran dapat ditentukan dari keberhasilan peserta didik mencapai tujuan pembelajaran.

 

 

Aktivitas

Belajar bukanlah menghafal sejumlah fakta atau informasi. Belajar adalah berbuat; memperoleh pengalaman tertentu sesuai dengan tujuan yang diharapkan. Karena itu, strategi pembelajaran harus dapat mendorong aktivitas peserta didik.

Individualitas

Mengajar adalah usaha mengembangkan setiap individu peserta didik. Walaupun kita mengajar pada sekelompok peserta didik, namun pada hakikatnya yang ingin kita capai adalah perubahan perilaku setiap peserta didik.

Integritas

Mengajar harus dipandang sebagai usaha mengembangkan seluruh pribadi peserta didik. Mengajar bukan hanya mengembangkan kemampuan kognitif saja, tetapi juga meliputi aspek afektif, dan psikomotorik.

Prinsip khusus dalam pengelolaan pembelajaran sebagai berikut.

Interaktif

Prinsip interaktif mengandung makna bahwa mengajar bukan hanya sekadar menyampaikan pengetahuan dari guru ke peserta didik; akan tetapi mengajar dianggap sebagai proses mengatur lingkungan yang dapat merangsang peserta didiik untuk belajar. Dengan demikian, proses pembelajaran adalah proses interaksi baik antara guru dan peserta didik, antara peserta didik dan peserta didik, maupun antara peserta didik dengan lingkungannya. Melalui proses interaksi, memungkinkan kemampuan peserta didik akan berkembang, baik mental maupun intelektualnya.

Inspiratif

Proses pembelajaran adalah proses yang inspiratif, yang memungkinkan peserta didik untuk mencoba dan melakukan sesuatu. Berbagai informasi dan proses pemecahan masalah dalam pembelajaran bukan harga mati, yang bersifat mutlak, akan tetapi merupakan hipotesis yang merangsang peserta didik untuk mau mencoba dan mengujinya. Oleh karena itu, guru mesti membuka berbagai kemungkinan yang dapat dikerjakan peserta didik. Biarkan peserta didik berbuat dan berpikir sesuai dengan inspirasinya sendiri, sebab pengetahuan pada dasarnya bersifat subjektif yang bisa dimaknai oleh setiap peserta didik.

Menyenangkan

Proses pembelajaran adalah proses yang dapat mengembangkan seluruh potensi peserta didik. Seluruh potensi itu hanya mungkin dapat berkembang manakala mereka terbebas dari rasa takut dan mene­gangkan. Oleh karena itu, perlu diupayakan agar proses pembelajaran merupakan proses yang menyenangkan (joyfull learning). Proses pembelajaran yang menyenangkan bisa dilakukan, pertama, dengan menata ruangan yang apik dan menarik, yaitu yang memenuhi unsur kesehatan, misalnya dengan pengaturan cahaya, ventilasi, dan se­bagainya; serta memenuhi unsur keindahan, misalnya cat tembok yang segar dan bersih, bebas dari debu, lukisan dan karya-karya peserta didik yang tertata, vas bunga, dan lain sebagainya. Kedua, melalui pengelolaan pembelajaran yang hidup dan bervariasi, yakni dengan menggunakan pola dan model pembelajaran, media, dan sumber belajar yang relevan serta gerakan-gerakan guru yang mampu mem­bangkitkan motivasi belajar peserta didik.

Menantang

Proses pembelajaran adalah proses yang menantang peserta didik untuk mengembangkan kemampuan berpikir, yakni merangsang kerja otak secara maksimal. Kemampuan tersebut dapat ditumbuhkan dengan cara mengembangkan rasa ingin tahu peserta didik melalui kegiatan men­coba-coba, berpikir secara intuitif atau bereksplorasi. Apa pun yang diberikan dan dilakukan guru harus dapat merangsang peserta didik untuk berpikir (learning how to learn) dan melakukan (learning how to do). Apabila guru akan memberikan informasi, hendaknya tidak mem­berikan informasi yang sudah jadi yang siap dikonsumsi peserta didik, akan tetapi informasi yang mampu membangkitkan peserta didik untuk mau “mengunyahnya”, untuk memikirkannya sebelum ia mengambil kesimpulan. Untuk itu,  dalam hal-hal tertentu, sebaiknya guru memberikan informasi yang “meragukan”, kemudian karena keraguan itulah peserta terangsang untuk membuktikannya.

Motivasi

Motivasi adalah aspek yang sangat penting untuk membelajar­kan peserta didik. Tanpa adanya motivasi, tidak mungkin mereka memiliki kemauan untuk belajar. Oleh karena itu, membangkitkan motivasi merupakan salah satu peran dan tugas guru dalam setiap proses pembelajaran. Motivasi dapat diartikan sebagai dorongan yang memungkinkan peserta didik untuk bertindak atau melakukan sesuatu. Dorongan itu hanya mungkin muncul dalam diri peserta didik manakala mereka merasa membutuhkan (need). Peserta didik yang merasa butuh akan bergerak dengan sendirinya untuk memenuhi kebutuhannya. Oleh sebab, itu dalam rangka membangkitkan motivasi, guru harus dapat menunjukkan pentingnya pengalaman dan materi belajar bagi kehidupan peserta didik, dengan demikian peserta didik akan belajar bukan hanya sekadar untuk memperoleh nilai atau pujian akan tetapi didorong oleh keinginan untuk memenuhi kebutuhannya.

 

Rangkuman

  • Ada dua hal yang patut dicermati dari pengertian-pengertian strategi pembelajaran Pertama, strategi pembelajaran merupakan rencana tindakan (rangkaian kegiatan) termasuk penggunaan metode dan pemanfaatan berbagai sumber daya/kekuatan dalam pembelajaran. Ini berarti penyusunan suatu strategi baru sampai pada proses penyusunan rencana kerja belum sampai pada tindakan. Kedua, strategi disusun untuk mencapai tujuan tertentu. Artinya, arah dari semua keputusan penyusunan strategi adalah pencapaian tujuan.
  • Model pembelajaran adalah: “Kerangka konseptual yang melukiskan prosedur yang sistematis dalam mengorganisasikan pengalaman belajar untuk mencapai tujuan belajar tertentu, dan berfungsi sebagai pedoman bagi para perancang pembelajaran dan para pengajar dalam merencanakan aktivitas belajar mengajar.”
  • Pendekatan dapat diartikan sebagai titik tolak atau sudut pandang kita terhadap proses pembelajaran. Istilah pendekatan merujuk pada pandangan tentang terjadinya proses yang sifatnya masih sangat umum
  • Metode diartikan sebagai suatu cara atau prosedur yang dipakai untuk mencapai tujuan tertentu. Dalam kaitannya dengan pembelajaran metode didefinisikan sebagai cara-cara menyajikan bahan pelajara pada peserta didik untuk tercapainya tujuan yang telah ditetapkan
  • Teknik dan taktik mengajar merupakan pen­jabaran dari metode pembelajaran. Teknik adalah cara yang dilakukan ­orang dalam rangka mengimplementasikan suatu metode yaitu cara yang harus dilakukan agar metode yang dilakukan berjalan efektif dan efisien. Taktik adalah gaya seseorang dalam melaksanakan suatu teknik atau metode tertentu. Dengan demikian, taktik sifatnya lebih individual.
  • Komponen strategi pembelajaran adalah; guru, siswa, tujuan, bahan pelajaran, kegiatan pembelajaran, metode, alat, sumber pembelajaran dan evaluasi
  • Komponen-komponen strategi pembelajaran akan mempengaruhi jalannya pembelajaran, untuk itu, semua komponen strategi pembelajaran merupakan faktor yang berpengaruh terhadap strategi pembelajaran.
  • Faktor yang mempengaruhi strategi pembelajaran dapat dikelompokkan menjadi 3, yaitu peserta didik, sebagai raw input, instrumental input atau sasaran, enviromental input ( lingkungan).
  • Strategi pembelajaran efektif: berorentasi pada tujuan. aktivitas, individualitas, integritas, motivasi, menantang. menyenangkan, inspiratif, interaktif

11/15/2009 Posted by | SBB | 5 Komentar

RANAH PENILAIAN KOGNITIF, AFEKTIF, DAN PSIKOMOTORIK

PENDAHULUAN

Penilaian adalah upaya atau tindakan untuk mengetahui sejauh mana tujuan yang telah ditetapkan itu tercapai atau tidak. Dengan kata lain, penilaian berfungsi sebagai alat untuk mengtahui keberhasilan proses dan hasil belajar siswa. Dalam sistem pendidikan nasional rumusan tujuan pendidikan, baik tujuan kurikuler maupun tujuan instruksional, menggunakan klasifikasi hasil belajar dari Benyamin Bloom yang secara garis besar membaginya menjadi tiga ranah, yakni ranah kognitif, ranah afektif, dan ranah psikomotorik.

Salah satu prinsip dasar yang harus senantiasa diperhatikan dan dipegangi dalam rangka evaluasi hasil belajar adalah prinsip kebulatan, dengan prinsip evaluator dalam melaksanakan evaluasi hasil belajar dituntut untuk mengevaluasi secara menyeluruh terhadap peserta didik, baik dari segi pemahamannya terhadap materi atau bahan pelajaran yang telah diberikan (aspek kognitif), maupun dari segi penghayatan (aspek afektif), dan pengamalannya (aspek psikomotor).

Ketiga aspek atau ranah kejiwaan itu erat sekali dan bahkan tidak mungkin dapat dilepaskan dari kegiatan atau proses evaluasi hasil belajar. Benjamin S. Bloom dan kawan-kawannya itu berpendapat bahwa pengelompokkan tujuan pendidikan itu harus senantiasa mengacu kepada tiga jenis domain (daerah binaan atau ranah) yang melekat pada diri peserta didik, yaitu:

a)    Ranah proses berfikir (cognitive domain)

b)    Ranah nilai atau sikap (affective domain)

c)    Ranah keterampilan (psychomotor domain)

Dalam konteks evaluasi hasil belajar, maka ketiga domain atau ranah itulah yang harus dijadikan sasaran dalam setiap kegiatan evaluasi hasil belajar. Sasaran kegiatan evaluasi hasil belajar adalah:

1)    Apakah peserta didik sudah dapat memahami semua bahan atau materi pelajaran yang telah diberikan pada mereka?

2)    Apakah peserta didik sudah dapat menghayatinya?

3)    Apakah materi pelajaran yang telah diberikan itu sudah dapat diamalkan secara kongkret dalam praktek atau dalam kehidupannya sehari-hari?

Ketiga ranah tersebut menjadi obyek penilaian hasil belajar. Diantara ketiga ranah itu, ranah kognitiflah yang paling banyak dinilai oleh para guru disekolah karena berkaitan dengan kemampuan para siswa dalam menguasai isi bahan pengajaran.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TINJAUAN PUSTAKA

2.1 Pengertian Ranah Penilaian Kognitif, Ciri-ciri, dan Contoh Pengukuran Ranah Penilaian Kognitif

2.1.1 Pengertian Ranah Penilaian Kognitif

Ranah kognitif adalah ranah yang mencakup kegiatan mental (otak). Menurut Bloom, segala upaya yang menyangkut aktivitas otak adalah termasuk dalam ranah kognitif.  Ranah kognitif berhubungan dengan kemampuan berfikir, termasuk didalamnya kemampuan menghafal, memahami, mengaplikasi, menganalisis, mensintesis, dan kemampuan mengevaluasi. Dalam ranah kognitif itu terdapat enam aspek atau jenjang proses berfikir, mulai dari jenjang terendah sampai dengan jenjang yang paling tinggi. Keenam jenjang atau aspek yang dimaksud adalah:

  • Pengetahuan/hafalan/ingatan (knowledge)

Adalah kemampuan seseorang untuk mengingat-ingat kembali (recall) atau mengenali kembali tentang nama, istilah, ide, rumus-rumus, dan sebagainya, tanpa mengharapkan kemampuan untuk menggunkannya. Pengetahuan atau ingatan adalah merupakan proses berfikir yang paling rendah.

Salah satu contoh hasil belajar kognitif pada jenjang pengetahuan adalah dapat menghafal surat al-‘Ashar, menerjemahkan dan menuliskannya secara baik dan benar, sebagai salah satu materi pelajaran kedisiplinan yang diberikan oleh guru Pendidikan Agama Islam di sekolah.

  • Pemahaman (comprehension)

Adalah kemampuan seseorang untuk mengerti atau memahami sesuatu setelah sesuatu itu diketahui dan diingat. Dengan kata lain, memahami adalah mengetahui tentang sesuatu dan dapat melihatnya dari berbagai segi.  Seseorang peserta didik dikatakan memahami sesuatu apabila ia dapat memberikan penjelasan atau memberi uraian yang lebih rinci tentang hal itu dengan menggunakan kata-katanya sendiri. Pemahaman merupakan jenjang kemampuan berfikir yang setingkat lebih tinggi dari ingatan atau hafalan.

Salah satu contoh hasil belajar ranah kognitif pada jenjang pemahaman ini misalnya: Peserta didik atas pertanyaan Guru Pendidikan Agama Islam dapat menguraikan tentang makna kedisiplinan yang terkandung dalam surat al-‘Ashar secara lancar dan jelas.

  • Penerapan (application)

Adalah kesanggupan seseorang untuk menerapkan atau menggunakan ide-ide umum, tata cara ataupun metode-metode, prinsip-prinsip, rumus-rumus, teori-teori dan sebagainya, dalam situasi yang baru dan kongkret. Penerapan ini adalah merupakan proses berfikir setingkat lebih tinggi ketimbang pemahaman.

Salah satu contoh hasil belajar kognitif jenjang penerapan misalnya: Peserta didik mampu memikirkan tentang penerapan konsep kedisiplinan yang diajarkan Islam dalam kehidupan sehari-hari baik dilingkungan keluarga, sekolah, maupun masyarakat.

  • Analisis (analysis)

Adalah kemampuan seseorang untuk merinci atau menguraikan suatu bahan atau keadaan menurut bagian-bagian yang lebih kecil dan mampu memahami hubungan di antara bagian-bagian atau faktor-faktor yang satu dengan faktor-faktor lainnya. Jenjang analisis adalah setingkat lebih tinggi ketimbang jenjang aplikasi.

Contoh: Peserta didik dapat merenung dan memikirkan dengan baik tentang wujud nyata dari kedisiplinan seorang siswa dirumah, disekolah, dan dalam kehidupan sehari-hari di tengah-tengah masyarakat, sebagai bagian dari ajaran Islam.

  • Sintesis (syntesis)

Adalah kemampuan berfikir yang merupakan kebalikan dari proses berfikir analisis. Sisntesis merupakan suatu proses yang memadukan bagian-bagian atau unsur-unsur secara logis, sehingga menjelma menjadi suatu pola yang yang berstruktur atau bebrbentuk pola baru. Jenjang sintesis kedudukannya setingkat lebih tinggi daripada jenjang analisis. Salah satu jasil belajar kognitif dari jenjang sintesis ini adalah: peserta didik dapat menulis karangan tentang pentingnya kedisiplinan sebagiamana telah diajarkan oleh islam.

  • Penilaian/penghargaan/evaluasi (evaluation)

Adalah merupakan jenjang berpikir paling tinggi dalam ranah kognitif dalam taksonomi Bloom. Penilian/evaluasi disini merupakan kemampuan seseorang untuk membuat pertimbangan terhadap suatu kondisi, nilai atau ide, misalkan jika seseorang dihadapkan pada beberapa pilihan maka ia akan mampu memilih satu pilihan yang terbaik sesuai dengan patokan-patokan atau kriteria yang ada.

Salah satu contoh hasil belajar kognitif jenjang evaluasi adalah: peserta didik mampu menimbang-nimbang tentang manfaat yang dapat dipetik oleh seseorang yang berlaku disiplin dan dapat menunjukkan mudharat atau akibat-akibat negatif yang akan menimpa seseorang yang bersifat malas atau tidak disiplin, sehingga pada akhirnya sampai pada kesimpulan penilaian, bahwa kwdisiplinan merupakan perintah Allah SWT yang waji dilaksanakan dalam sehari-hari.

Keenam jenjang berpikir yang terdapat pada ranah kognitif menurut Taksonomi Bloom itu, jika diurutkan secara hirarki piramidal adalah sebagai tertulis pada  gambar 1.

Keenam jenjang berpikir ranah kognitif bersifat kontinum dan overlap (tumpang tindih), dimana ranah yang lebih tinggi meliputi semua ranah yang ada dibawahnya. Overlap di antara enam jenjang berfikir itu akan lebih jelas terlihat pada gambar 2.

 

 

 

Penilaian           (Evaluation)

Sintesis                       (Syntesis)

Analisis                                         (Analysis)

Penerapan                                                          (Aplikation)

Pemahaman                                                                   (Comprehensi)

Pengetahuan                                                                              (Knowledge)

GAMBAR 1. Enam jenjang berpikir pada ranah kognitif

6

5

4

3

2

1

 

 

GAMBAR 2. Overlap antara enam jenjang pada ranah kognitif.

Keterangan : Pengetahuan (1) adalah merupakan jenjang berpikir paling dasar. Pemahaman (2) mencakup pengetahuan (1). Aplikasi atau penerapan (3) mencakup pemahaman (2)dan pengetahuan (1). Sintesis (5) meliputi juga analisis (4), aplikasi (3), pemahaman (2) dan pengetahuan (1). Evaluasi (6) meliputi juga sintesis (5) , analisis (4), aplikasi (3), pemahaman (2) dan pengetahuan (1).

Tujuan aspek kognitif berorientasi pada kemampuan berfikir yang mencakup kemampuan intelektual yang lebih sederhana, yaitu mengingat, sampai pada kemampuan memecahkan masalah yang menuntut siswa untuk menghubungakan dan menggabungkan beberapa ide, gagasan, metode atau prosedur yang dipelajari untuk memecahkan masalah tersebut. Dengan demikian aspek kognitif adalah subtaksonomi yang mengungkapkan tentang kegiatan mental yang sering berawal dari tingkat pengetahuan sampai ke tingkat yang paling tinggi yaitu evaluasi.

2.1.2 Ciri-ciri Ranah Penilaian Kognitif

Aspek kognitif berhubungan dengan kemampuan berfikir termasuk di dalamnya kemampuan memahami, menghafal, mengaplikasi, menganalisis, mensistesis dan kemampuan mengevaluasi. Menurut Taksonomi Bloom (Sax 1980), kemampuan kognitif adalah kemampuan berfikir secara hirarki yang terdiri dari pengetahuan, pemahaman, aplikasi, analisis, sintesis dan evaluasi.

Pada tingkat pengetahuan, peserta didik menjawab pertanyaan berdasarkan hafalan saja. Pada tingkat pemahaman peserta didik dituntut juntuk menyatakan masalah dengan kata-katanya sendiri, memberi contoh suatu konsep atau prinsip. Pada tingkat aplikasi, peserta didik dituntut untuk menerapkan prinsip dan konsep dalam situasi yang baru. Pada tingkat analisis, peserta didik diminta untuk untuk menguraikan informasi ke dalam beberapa bagian, menemukan asumsi, membedakan fakta dan pendapat serta menemukan hubungan sebab—akibat. Pada tingkat sintesis, peserta didik dituntut untuk menghasilkan suatu cerita, komposisi, hipotesis atau teorinya sendiri dan mensintesiskan pengetahuannya. Pada tingkat evaluasi, peserta didik mengevaluasi informasi seperti bukti, sejarah, editorial, teori-teori yang termasuk di dalamnya judgement terhadap hasil analisis untuk membuat kebijakan.

Tujuan aspek kognitif berorientasi pada kemampuan berfikir yang mencakup kemampuan intelektual yang lebih sederhana, yaitu mengingat, sampai pada kemampuan memecahkan masalah yang menuntut siswa untuk menghubungkan dan menggabungkan beberapa ide, gagasan, metode atau prosedur yang dipelajari untuk memecahkan masalah tersebut.

Dengan demikian aspek kognitif adalah sub-taksonomi yang mengungkapkan tentang kegiatan mental yang sering berawal dari tingkat pengetahuan sampai ke tingkat yang paling tinggi yaitu evaluasi. Aspek kognitif terdiri atas enam tingkatan dengan aspek belajar yang berbeda-beda. Keenam tingkat tersebut yaitu:

  1. Tingkat pengetahuan (knowledge), pada tahap ini menuntut siswa untuk mampu mengingat (recall) berbagai informasi yang telah diterima sebelumnya, misalnya fakta, rumus, terminologi strategi problem solving dan lain sebagianya.
  2. Tingkat pemahaman (comprehension), pada tahap ini kategori pemahaman dihubungkan dengan kemampuan untuk menjelaskan
    pengetahuan, informasi yang telah diketahui dengan kata-kata sendiri. Pada tahap ini peserta didik diharapkan menerjemahkan atau menyebutkan kembali yang telah didengar dengan kata-kata sendiri.
  3. Tingkat penerapan (application), penerapan merupakan kemampuan untuk menggunakan atau menerapkan informasi yang telah dipelajari kedalam situasi yang baru, serta memecahlcan berbagai masalah yang timbuldalam kehidupan sehari-hari.
  4. Tingkat analisis (analysis), analisis merupakan kemampuan
    mengidentifikasi, memisahkan dan membedakan komponen-komponen atau elemen suatu fakta, konsep, pendapat, asumsi, hipotesa atau kesimpulan, dan memeriksa setiap komponen tersebut untuk melihat ada atau tidaknya kontradiksi. Dalam tingkat ini peserta didik diharapkan menunjukkan hubungan di antara berbagai gagasan dengan cara membandingkan gagasan tersebut dengan standar, prinsip atau prosedur yang telah dipelajari.
  5. Tingkat sintesis (synthesis), sintesis merupakan kemampuan seseorang dalam mengaitkan dan menyatukan berbagai elemen dan unsur pengetahuan yang ada sehingga terbentuk pola baru yang lebih menyeluruh.
  6. Tingkat evaluasi (evaluation), evaluasi merupakan level tertinggi yang mengharapkan peserta didik mampu membuat penilaian dan keputusan tentang nilai suatu gagasan, metode, produk atau benda dengan menggunakan kriteria tertentu.

Apabila melihat kenyataan yang ada dalam sistem pendidikan yang diselenggarakan, pada umumnya baru menerapkan beberapa aspek kognitif tingkat rendah, seperti pengetahuan, pemahaman dan sedikit penerapan. Sedangkan tingkat analisis, sintesis dan evaluasi jarang sekali diterapkan. Apabila semua tingkat kognitif diterapkan secara merata dan terus-menerus maka hasil pendidikan akan lebih baik.

Tabel  Kaitan antara kegiatan pembelajaran dengan domain tingkatan aspek kognitif

No Tingkatan Deskripsi
1 Pengetahuan Arti: Pengetahuan terhadap fakta, konsep, definisi, nama, peristiwa, tahun, daftar, teori, prosedur,dll.

Contoh kegiatan belajar:

  • Mengemukakan arti
  • Menentukan lokasi
  • Mendriskripsikan sesuatu
  • Menceritakan apa yang terjadi
  • Menguraikan apa yang terjadi
2 Pemahaman Arti:pengertian terhadap hubungan antar-faktor, antar konsep, dan antar data hubungan sebab akibat penarikan kesimpulan

Contoh kegiatan belajar:

¨    Mengungkapakan gagasan dan pendapat dengan kata-kata sendiri

¨    Membedakan atau membandingkan

¨    Mengintepretasi data

¨    Mendriskripsikan dengan kata-kata sendiri

¨    Menjelaskan gagasan pokok

¨    Menceritakan kembali dengan kata-kata sendiri

 

3 Aplikasi Arti: Menggunakan pengetahuan untuk memecahkan masalah atau menerapkan pengetahuan dalam kehidupan sehari-hari

Contoh kegiatan:

  • Menghitung kebutuhan
  • Melakukan percobaan
  • Membuat peta
  • Membuat model
  • Merancang strategi
4 Analisis Artinya: menentukan bagian-bagian dari suatu masalah, penyelesaian, atau gagasan dan menunjukkan hubungan antar bagian tersebut

Contoh kegiatan belajar:

  • Mengidentifikasi faktor penyebab
  • Merumuskan masalah
  • Mengajukan pertanyaan untuk mencari informasi
  • Membuat grafik
  • Mengkaji ulang
5 Sintesis Artinya: menggabungkan berbagai informasi menjadi satu kesimpulan/konsepatau meramu/merangkai berbagai gagasan menjadi suatu hal yang baru

Contoh kegiatan belajar:

v   Membuat desain

v   Menemukan solusi masalah

v   Menciptakan produksi baru,dst.

6 Evaluasi Arti: mempertimbangkan dan menilai benar-salah, baik-buruk, bermanfaat-tidak bermanfaat

Contoh kegiatan belajar:

Mempertahankan pendapat

Membahas suatu kasus

Memilih solusi yang lebih baik

Menulis laporan,dst.

 

2.1.3 Contoh Pengukuran Ranah Penilaian Kognitif

Apabila melihat kenyataan yang ada dalam sistem pendidikan yang diselenggarakan, pada umumnya baru menerapkan beberapa aspek kognitif tingkat rendah, seperti pengetahuan, pemahaman dan sedikit penerapan. Sedangkan tingkat analisis, sintesis dan evaluasi jarang sekali diterapkan. Apabila semua tingkat kognitif diterapkan secara merata dan terus-menerus maka hasil pendidikan akan lebih baik. Pengukuran hasil belajar ranah kognitif dilakukan dengan tes tertulis.

Bentuk tes kognitif diantaranya; (1) tes atau pertanyaan lisan di kelas, (2) pilihan ganda, (3) uraian obyektif, (4) uraian non obyektif atau uraian bebas, (5) jawaban atau isian singkat, (6) menjodohkan, (7) portopolio dan (8) performans.

Cakupan yang diukur dalam ranah Kognitif  adalah:

a. Ingatan (C1) yaitu  kemampuan seseorang untuk mengingat. Ditandai dengan kemampuan menyebutkan simbol, istilah, definisi, fakta, aturan, urutan, metode.

  1. Pemahaman (C2) yaitu kemampuan seseorang untuk memahami tentang sesuatu hal. Ditandai dengan kemampuan menerjemahkan, menafsirkan, memperkirakan, menentukan, menginterprestasikan.

c. Penerapan (C3), yaitu kemampuan berpikir untuk menjaring & menerapkan dengan tepat tentang teori, prinsip, simbol pada situasi baru/nyata. Ditandai dengan kemampuan menghubungkan, memilih, mengorganisasikan, memindahkan, menyusun, menggunakan, menerapkan, mengklasifikasikan, mengubah struktur.

  1. Analisis (C4),  Kemampuan berfikir secara logis dalam  meninjau  suatu fakta/ objek menjadi lebih rinci. Ditandai dengan kemampuan  membandingkan, menganalisis, menemukan, mengalokasikan, membedakan, mengkategorikan.

e. Sintesis (C5),  Kemampuan berpikir untuk memadukan konsep-konsep secara logis sehingga menjadi suatu pola yang baru. Ditandai dengan kemampuan mensintesiskan, menyimpulkan, menghasilkan, mengembangkan, menghubungkan, mengkhususkan.

  1. Evaluasi (C6), Kemampuan berpikir untuk dapat memberikan pertimbangan terhadap sustu situasi, sistem nilai, metoda, persoalan dan pemecahannya dengan menggunakan tolak ukur tertentu sebagai patokan. Ditandai dengan kemampuan menilai, menafsirkan, mempertimbangkan dan menentukan.

Contohnya siswa dibina kompetensinya menyangkut kemampuan melukis jaring-jaring kubus. Namun, untuk dapat melukis jaring-jaring kubus setidaknya diperlukan pengetahuan (kognitif) tentang bentuk-bentuk jaring kubus dan cara-cara melukis garis-garis tegak lurus.

2.2 Pengertian Ranah Penilaian Afektif, Ciri-ciri, dan Contoh Pengukuran Ranah Penilaian Afektif

2.2.1 Pengertian Ranah Penilaian Afektif

Ranah afektif adalah ranah yang berkaitan dengan sikap dan nilai. Ranah afektif mencakup watak perilaku seperti perasaan, minat, sikap, emosi, dan nilai. Beberapa pakar mengatakan bahwa sikap seseorang dapat diramalkan perubahannya bila seseorang telah memiliki kekuasaan kognitif tingkat tinggi. Ciri-ciri hasil belajar afektif akan tampak pada peserta didik dalam berbagai tingkah laku. Seperti: perhatiannnya terhadap mata pelajaran pendidikan agama Islam, kedisiplinannya dalam mengikuti mata pelajaran agama disekolah, motivasinya yang tinggi untuk tahu lebih banyak mengenai pelajaran agama Islam yang di terimanya, penghargaan atau rasa hormatnya terhadap guru pendidikan agama Islam dan sebagainya.

Ranah afektif menjadi lebih rinci lagi ke dalam lima jenjang, yaitu: (1) receiving (2) responding (3) valuing (4) organization (5) characterization by evalue or calue complex

Receiving atau attending (= menerima atua memperhatikan), adalah kepekaan seseorang dalam menerima rangsangan (stimulus) dari luar yang datang kepada dirinya dalam bentuk masalah, situasi, gejala dan lain-lain. Termasuk dalam jenjang ini misalnya adalah: kesadaran dan keinginan untuk menerima stimulus, mengontrol dan menyeleksi gejala-gejala atau rangsangan yang datang dari luar. Receiving atau attenting juga sering di beri pengertian sebagai kemauan untuk memperhatikan suatu kegiatan atau suatu objek. Pada jenjang ini peserta didik dibina agar mereka bersedia menerima nilai atau nilai-nilai yang di ajarkan kepada mereka, dan mereka mau menggabungkan diri kedalam nilai itu atau meng-identifikasikan diri dengan nilai itu. Contah hasil belajar afektif jenjang receiving , misalnya: peserta didik bahwa disiplin wajib di tegakkan, sifat malas dan tidak di siplin harus disingkirkan jauh-jauh.

Responding (= menanggapi) mengandung arti “adanya partisipasi aktif”. Jadi kemampuan menanggapi adalah kemampuan yang dimiliki oleh seseorang untuk mengikut sertakan dirinya secara aktif dalam fenomena tertentu dan membuat reaksi terhadapnya salah satu cara. Jenjang ini lebih tinggi daripada jenjang receiving. Contoh hasil belajar ranah afektif responding adalah peserta didik tumbuh hasratnya untuk mempelajarinya lebih jauh atau menggeli lebih dalam lagi, ajaran-ajaran Islam tentang kedisiplinan.

Valuing (menilai=menghargai). Menilai atau menghargai artinya mem-berikan nilai atau memberikan penghargaan terhadap suatu kegiatan atau obyek, sehingga apabila kegiatan itu tidak dikerjakan, dirasakan akan membawa kerugian atau penyesalan. Valuing adalah merupakan tingkat afektif yang lebih tinggi lagi daripada receiving dan responding. Dalam kaitan dalam proses belajar mengajar, peserta didik disini tidak hanya mau menerima nilai yang diajarkan tetapi mereka telah berkemampuan untuk menilai konsep atau fenomena,  yaitu baik atau buruk. Bila suatu ajaran yang telah mampu mereka nilai dan mampu untuk mengatakan “itu adalah baik”, maka ini berarti bahwa peserta didik telah menjalani proses penilaian. Nilai itu mulai di camkan (internalized) dalam dirinya. Dengan demikian nilai tersebut telah stabil dalam peserta didik. Contoh hasil belajar efektif jenjang valuing adalah tumbuhnya kemampuan yang kuat pada diri peseta didik untuk berlaku disiplin, baik disekolah, dirumah maupun di tengah-tengah kehidupan masyarakat.

Organization (=mengatur atau mengorganisasikan), artinya memper-temukan perbedaan nilai sehingga terbentuk nilai baru yang universal, yang membawa pada perbaikan umum. Mengatur atau mengorganisasikan merupakan pengembangan dari nilai kedalam satu sistem organisasi, termasuk didalamnya hubungan satu nilai denagan nilai  lain., pemantapan dan perioritas nilai yang telah dimilikinya. Contoh nilai efektif jenjang organization adalah peserta didik mendukung penegakan disiplin nasional yang telah dicanangkan oleh bapak presiden Soeharto pada peringatan hari kemerdekaan nasional tahun 1995.

Characterization by evalue or calue complex (=karakterisasi dengan  suatu nilai atau komplek nilai), yakni keterpaduan semua sistem nilai yang telah dimiliki oleh seseorang, yang mempengaruhi pola kepribadian dan tingkah lakunya. Disini proses internalisasi nilai telah menempati tempat tertinggi dalal suatu hirarki nilai. Nilai itu telah tertanam secara konsisten pada sistemnya dan telah mempengaruhi emosinya. Ini adalah merupakan tingkat efektif tertinggi, karena sikap batin peserta didik telah benar-benar bijaksana. Ia telah memiliki phyloshopphy of life yang mapan. Jadi pada jenjang ini peserta didik telah memiliki sistem nilai yang telah mengontrol tingkah lakunya untuk suatu waktu yang lama, sehingga membentu karakteristik “pola hidup” tingkah lakunya menetap, konsisten dan dapat diramalkan. Contoh hasil belajar afektif pada jenjang ini adalah siswa telah memiliki kebulatan sikap wujudnya peserta didik menjadikan perintah Allah SWT yang tertera di Al-Quran menyangkut disiplinan, baik kedisiplinan sekolah, dirumah maupun ditengah-tengan kehidupan masyarakat.

Secara skematik kelima jenjang afektif sebagaimana telah di kemukakan dalam pembicaraan diatas, menurut A.J Nitko (1983) dapat di gambarkan sebagai berikut:

 

Ranah afektif tidak dapat diukur seperti halnya ranah kognitif, karena dalam ranah afektif kemampuan yang diukur adalah: Menerima (memperhatikan), Merespon,  Menghargai, Mengorganisasi, dan Karakteristik suatu nilai.

Skala yang digunakan untuk mengukur ranah afektif  seseorang terhadap kegiatan suatu objek diantaranya skala sikap. Hasilnya berupa kategori sikap, yakni mendukung (positif), menolak (negatif), dan netral. Sikap pada hakikatnya adalah kecenderungan berperilaku pada seseorang. Ada tiga komponen sikap, yakni kognisi, afeksi, dan konasi. Kognisi berkenaan dengan pengetahuan seseorang tentang objek yang dihadapinya. Afeksi berkenaan dengan perasaan dalam menanggapi objek tersebut, sedangkan konasi berkenaan dengan kecenderungan berbuat terhadap objek tersebut. Oleh sebab itu, sikap   selalu bermakna bila dihadapkan kepada objek tertentu.

Skala sikap dinyatakan dalam bentuk pernyataan untuk dinilai oleh responden, apakah pernyataan itu didukung atau ditolaknya, melalui rentangan nilai tertentu. Oleh sebab itu, pernyataan yang diajukan dibagi ke dalam dua kategori, yakni pernyataan positif dan pernyataan negatif.

Salah satu skala sikap yang sering digunakan adalah skala Likert. Dalam skala Likert, pernyataan-pernyataan yang diajukan, baik pernyataan positif maupun negatif, dinilai oleh subjek dengan sangat setuju, setuju, tidak punya pendapat, tidak setuju, sangat tidak setuju.

2.2.2 Ciri-ciri Ranah Penilaian Afektif

Pemikiran atau perilaku harus memiliki dua kriteria untuk diklasifikasikan sebagai ranah afektif (Andersen, 1981:4). Pertama, perilaku melibatkan perasaan dan emosi seseorang. Kedua, perilaku harus tipikal perilaku seseorang. Kriteria lain yang termasuk ranah afektif adalah intensitas, arah, dan target. Intensitas menyatakan derajat atau kekuatan dari perasaan. Beberapa perasaan lebih kuat dari yang lain, misalnya cinta lebih kuat dari senang atau suka. Sebagian orang kemungkinan memiliki perasaan yang lebih kuat dibanding yang lain. Arah perasaan berkaitan dengan orientasi positif atau negatif dari perasaan yang menunjukkan apakah perasaan itu baik atau buruk.

Misalnya senang pada pelajaran dimaknai positif, sedang kecemasan dimaknai negatif. Bila intensitas dan arah perasaan ditinjau bersama-sama, maka karakteristik afektif berada dalam suatu skala yang kontinum. Target mengacu pada objek, aktivitas, atau ide sebagai arah dari perasaan. Bila kecemasan merupakan karakteristik afektif yang ditinjau, ada beberapa kemungkinan target. Peserta didik mungkin bereaksi terhadap sekolah, matematika, situasi sosial, atau pembelajaran. Tiap unsur ini bisa merupakan target dari kecemasan. Kadang-kadang target ini diketahui oleh seseorang namun kadang-kadang tidak diketahui. Seringkali peserta didik merasa cemas bila menghadapi tes di kelas. Peserta didik tersebut cenderung sadar bahwa target kecemasannya adalah tes.

Ada 5 tipe karakteristik afektif yang penting berdasarkan tujuannya, yaitu sikap, minat, konsep diri, nilai, dan moral.

  1. Sikap

Sikap merupakan suatu kencendrungan untuk bertindak secara suka atau tidak suka terhadap suatu objek. Sikap dapat dibentuk melalui cara mengamati dan menirukan sesuatu yang positif, kemudian melalui penguatan serta menerima informasi verbal. Perubahan sikap dapat diamati dalam proses pembelajaran, tujuan yang ingin dicapai, keteguhan, dan konsistensi terhadap sesuatu. Penilaian sikap adalah penilaian yang dilakukan untuk mengetahui sikap peserta didik terhadap mata pelajaran, kondisi pembelajaran, pendidik, dan sebagainya.

Menurut Fishbein dan Ajzen (1975) sikap adalah suatu predisposisi yang dipelajari untuk merespon secara positif atau negatif terhadap suatu objek, situasi, konsep, atau orang. Sikap peserta didik terhadap objek misalnya sikap terhadap sekolah atau terhadap mata pelajaran. Sikap peserta didik ini penting untuk ditingkatkan (Popham, 1999). Sikap peserta didik terhadap mata pelajaran, misalnya bahasa Inggris, harus lebih positif setelah peserta didik mengikuti pembelajaran bahasa Inggris dibanding sebelum mengikuti pembelajaran. Perubahan ini merupakan salah satu indikator keberhasilan pendidik dalam melaksanakan proses pembelajaran. Untuk itu pendidik harus membuat rencana pembelajaran termasuk pengalaman belajar peserta didik yang membuat sikap peserta didik terhadap mata pelajaran menjadi lebih positif.

  1. Minat

Menurut Getzel (1966), minat adalah suatu disposisi yang terorganisir melalui pengalaman yang mendorong seseorang untuk memperoleh objek khusus, aktivitas, pemahaman, dan keterampilan untuk tujuan perhatian atau pencapaian. Sedangkan menurut kamus besar bahasa Indonesia (1990: 583), minat atau keinginan adalah kecenderungan hati yang tinggi terhadap sesuatu. Hal penting pada minat adalah intensitasnya. Secara umum minat termasuk karakteristik afektif yang memiliki intensitas tinggi.

Penilaian minat dapat digunakan untuk:

  • mengetahui minat peserta didik sehingga mudah untuk pengarahan dalam pembelajaran,
  • mengetahui bakat dan minat peserta didik yang sebenarnya,
  • pertimbangan penjurusan dan pelayanan individual peserta didik,
  • menggambarkan keadaan langsung di lapangan/kelas,

Mengelompokkan didik yang memiliki peserta minat sama, f. acuan dalam menilai kemampuan peserta didik secara keseluruhan dan memilih metode yang tepat dalam penyampaian materi,

  • mengetahui tingkat minat peserta didik terhadap pelajaran yang diberikan pendidik,
  • bahan pertimbangan menentukan program sekolah,
  • meningkatkan motivasi belajar peserta didik.
  1. Konsep Diri

Menurut Smith, konsep diri adalah evaluasi yang dilakukan individu terhadap kemampuan dan kelemahan yang dimiliki. Target, arah, dan intensitas konsep diri pada dasarnya seperti ranah afektif yang lain. Target konsep diri biasanya orang tetapi bisa juga institusi seperti sekolah. Arah konsep diri bisa positif atau negatif, dan intensitasnya bisa dinyatakan dalam suatu daerah kontinum, yaitu mulai dari rendah sampai tinggi.

Konsep diri ini penting untuk menentukan jenjang karir peserta didik, yaitu dengan mengetahui kekuatan dan kelemahan diri sendiri, dapat dipilih alternatif karir yang tepat bagi peserta didik. Selain itu informasi konsep diri penting bagi sekolah untuk memberikan motivasi belajar peserta didik dengan tepat.

Penilaian konsep diri dapat dilakukan dengan penilaian diri. Kelebihan dari penilaian diri adalah sebagai berikut:

  • Pendidik mampu mengenal kelebihan dan kekurangan peserta didik.
  • Peserta didik mampu merefleksikan kompetensi yang sudah dicapai.
  • Pernyataan yang dibuat sesuai dengan keinginan penanya.
    • Memberikan motivasi diri dalam hal penilaian kegiatan peserta didik.
    • Peserta didik lebih aktif dan berpartisipasi dalam proses pembelajaran.
    • Dapat digunakan untuk acuan menyusun bahan ajar dan mengetahui standar input peserta didik.
    • Peserta didik dapat mengukur kemampuan untuk mengikuti pembelajaran.
    • Peserta didik dapat mengetahui ketuntasan belajarnya.
    • Melatih kejujuran dan kemandirian peserta didik.
    • Peserta didik mengetahui bagian yang harus diperbaiki.
    • Peserta didik memahami kemampuan dirinya.
    • Pendidik memperoleh masukan objektif tentang daya serap peserta didik.
    • Mempermudah pendidik untuk melaksanakan remedial, hasilnya dapat untuk instropeksi pembelajaran yang dilakukan.
    • Peserta didik belajar terbuka dengan orang lain.
    • Peserta didik mampu menilai dirinya.
    • Peserta didik dapat mencari materi sendiri.
    • Peserta didik dapat berkomunikasi dengan temannya.
  1. Nilai

Nilai menurut Rokeach (1968) merupakan suatu keyakinan tentang perbuatan, tindakan, atau perilaku yang dianggap baik dan yang dianggap buruk. Selanjutnya dijelaskan bahwa sikap mengacu pada suatu organisasi sejumlah keyakinan sekitar objek spesifik atau situasi, sedangkan nilai mengacu pada keyakinan.

Target nilai cenderung menjadi ide, target nilai dapat juga berupa sesuatu seperti sikap dan perilaku. Arah nilai dapat positif dan dapat negatif. Selanjutnya intensitas nilai dapat dikatakan tinggi atau rendah tergantung pada situasi dan nilai yang diacu.

Definisi lain tentang nilai disampaikan oleh Tyler (1973:7), yaitu nilai adalah suatu objek, aktivitas, atau ide yang dinyatakan oleh individu dalam mengarahkan minat, sikap, dan kepuasan. Selanjutnya dijelaskan bahwa manusia belajar menilai suatu objek, aktivitas, dan ide sehingga objek ini menjadi pengatur penting minat, sikap, dan kepuasan. Oleh karenanya satuan pendidikan harus membantu peserta didik menemukan dan menguatkan nilai yang bermakna dan signifikan bagi peserta didik untuk memperoleh kebahagiaan personal dan memberi konstribusi positif terhadap masyarakat.

  1. Moral

Piaget dan Kohlberg banyak membahas tentang per-kembangan moral anak. Namun Kohlberg mengabaikan masalah hubungan antara judgement moral dan tindakan moral. Ia hanya mempelajari prinsip moral seseorang melalui penafsiran respon verbal terhadap dilema hipotetikal atau dugaan, bukan pada bagaimana sesungguhnya seseorang bertindak.

Moral berkaitan dengan perasaan salah atau benar terhadap kebahagiaan orang lain atau perasaan terhadap tindakan yang dilakukan diri sendiri. Misalnya menipu orang lain, membohongi orang lain, atau melukai orang lain baik fisik maupun psikis. Moral juga sering dikaitkan dengan keyakinan agama seseorang, yaitu keyakinan akan perbuatan yang berdosa dan berpahala. Jadi moral berkaitan dengan prinsip, nilai, dan keyakinan seseorang.

Ranah afektif lain yang penting adalah:

  • Kejujuran: peserta didik harus belajar menghargai kejujuran dalam berinteraksi dengan orang lain.
  • Integritas: peserta didik harus mengikatkan diri pada kode nilai, misalnya moral dan artistik.
  • Adil: peserta didik harus berpendapat bahwa semua orang mendapat perlakuan yang sama dalam memperoleh pendidikan.
  • Kebebasan: peserta didik harus yakin bahwa negara yang demokratis memberi kebebasan yang bertanggung jawab secara maksimal kepada semua orang.

 

 

 

Tabel  Kaitan antara kegiatan pembelajaran dengan domain tingkatan aspek Afektif

Tingkat Contoh kegiatan pembelajaran
Penerimaan (Receiving) Arti : Kepekaan (keinginan menerima/memperhatikan) terhadap fenomena/stimult menunjukkan perhatian terkontrol dan terseleksi

Contoh kegiatan belajar :

-sering mendengarkan musik

– senang membaca puisi

– senang mengerjakan soal matematik

– ingin menonton sesuatu

– senang menyanyikan lagu

Responsi (Responding) Arti : menunjukkan perhatian aktif melakukan sesuatu dengan/tentang fenomena setuju, ingin, puas meresponsi (mendengar)

Contoh kegiatan belajar :

ü      mentaati aturan

ü      mengerjakan tugas

ü      mengungkapkan perasaan

ü      menanggapi pendapat

ü      meminta maaf atas kesalahan

ü      mendamaikan orang yang bertengkar

ü      menunjukkan empati

ü      menulis puisi

ü      melakukan renungan

ü      melakukan introspeksi

Acuan Nilai

( Valuing)

Arti : Menunjukkan konsistensi perilaku yang mengandung nilai, termotivasi berperilaku sesuai dengan nilai-nilai yang pasti

Tingkatan : menerima, lebih menyukai, dan menunjukkan komitmen terhadap suatu nilai

Contoh Kegiatan Belajar :

  • mengapresiasi seni
  • menghargai peran
  • menunjukkan perhatian
  • menunjukkan alasan
  • mengoleksi kaset lagu, novel, atau barang antik
  • menunjukkan simpati kepada korban pelanggaran HAM
  • menjelaskan alasan senang membaca novel

 

Organisasi

Arti : mengorganisasi nilai-nilai yang relevan ke dalam suatu sistem menentukan saling hubungan antar nilai memantapkan suatu nilai yang dominan dan diterima di mana-mana memantapkan suatu nilaimyang dominan dan diterima di mana-mana

Tingkatan : konseptualisasi suatu nilai, organisasi suatu sistem nilai

Contoh kegiatan belajar :

  • rajin, tepat waktu
  • berdisiplin diri  mandiri dalam bekerja secara independen
  • objektif dalam memecahkan masalah
  • mempertahankan pola hidup sehat
  • menilai masih pada fasilitas umum dan mengajukan saran perbaikan
  • menyarankan pemecahan masalah HAM
  • menilai kebiasaan konsumsi
  • mendiskusikan cara-cara menyelesaikan konflik antar- teman

2.2.3 Contoh Pengukuran Ranah Penilaian Afektif

Kompetensi siswa dalam ranah afektif yang perlu dinilai utamanya menyangkut sikap dan minat siswa dalam belajar. Secara teknis penilaian ranah afektif dilakukan melalui dua hal yaitu: a) laporan diri oleh siswa yang biasanya dilakukan dengan pengisian angket anonim, b) pengamatan sistematis oleh guru terhadap afektif siswa dan perlu lembar pengamatan.

Ranah afektif tidak dapat diukur seperti halnya ranah kognitif, karena dalam ranah afektif kemampuan yang diukur adalah:

  1. Menerima (memperhatikan), meliputi kepekaan terhadap kondisi, gejala,  kesadaran, kerelaan, mengarahkan perhatian
  2. Merespon,  meliputi merespon secara  diam-diam, bersedia merespon, merasa  puas  dalam merespon, mematuhi peraturan
  3. Menghargai, meliputi menerima suatu nilai, mengutamakan suatu nilai, komitmen terhadap nilai
  4. Mengorganisasi, meliputi mengkonseptualisasikan nilai, memahami hubungan abstrak, mengorganisasi sistem suatu nilai

Karakteristik suatu nilai, meliputi falsafah hidup dan sistem nilai yang dianutnya. Contohnya mengamati tingkah laku siswa selama mengikuti proses belajar mengajar berlangsung.

Skala yang sering digunakan dalam instrumen (alat) penilaian afektif adalah Skala Thurstone, Skala Likert, dan Skala Beda Semantik.

Contoh Skala Thurstone: Minat terhadap pelajaran sejarah

7 6 5 4 3 2 1
Saya senang balajar sejarah

 

 

 

 

 

 

 

Pelajaran sejarah bermanfaat

 

 

 

 

 

 

 

Pelajaran sejarah membosankan

 

 

 

 

 

 

 

Dst….

 

 

 

 

 

 

 

Contoh Skala Likert: Minat terhadap pelajaran sejarah

  1. Pelajaran sejarah bermanfaat
SS S TS STS
  1. Pelajaran sejarah sulit

 

 

 

 

  1. Tidak semua harus belajar sejarah

 

 

 

 

  1. Sekolah saya menyenangkan

 

 

 

 

Keterangan:

SS : Sangat setuju

S : Setuju

TS : Tidak setuju

STS : Sangat tidak setuju

 

Contoh Lembar Penilaian Diri Siswa

Minat Membaca

Nama Pembelajar:_____________________________

No Deskripsi Ya/Tidak
1 Saya lebih suka membaca dibandingkan dengan melakukan hal-hal lain

 

2 Banyak yang dapat saya ambil hikmah dari buku yang saya baca

 

3 Saya lebih banyak membaca untuk waktu luang saya

 

4 Dst…………..

 

2.3 Pengertian Ranah Penilaian Psikomotorik, Ciri-ciri, dan Contoh Pengukuran Ranah Penilaian Psikomotorik

2.3.1 Pengertian Ranah Penilaian Psikomotor

Ranah psikomotor merupakan ranah yang berkaitan dengan keterampilan (skill) tau kemampuan bertindak setelah seseorang menerima pengalaman belajar tertentu. Ranah psikomotor adalah ranah yang berhubungan dengan aktivitas fisik, misalnya lari, melompat, melukis, menari, memukul, dan sebagainya. Hasil belajar ranah psikomotor dikemukakan oleh Simpson (1956) yang menyatakan bahwa hasil belajar psikomotor ini tampak dalam bentuk keterampilan (skill) dan kemampuan bertindak individu. Hasil belajar psikomotor ini sebenarnya merupakan kelanjutan dari hasil belajar kognitif (memahami sesuatu) dan dan hasil belajar afektif (yang baru tampak dalam bentuk kecenderungan-kecenderungan berperilaku). Hasi belajar kognitif dan hasil belajar afektif akan menjadi hasil belajar psikomotor apabila peserta didik telah menunjukkan perilaku atau perbuatan tertentu sesuai dengan makna yang terkandung dalam ranah kognitif dan ranah afektif dengan materi kedisiplinan menurut agama Islam sebagaimana telah dikemukakan pada pembiraan terdahulu, maka wujud nyata dari hasil psikomotor yang  merupakan kelanjutan dari hasil belajar kognitif afektif itu adalah; (1) peserta didik bertanya kepada guru pendidikan agama Islam tentang contoh-contoh kedisiplinan yang telah ditunjukkan oleh Rosulullah SAW, para sahabat, para ulama dan lain-lain; (2) peseta didik mencari dan membaca buku-buku, majalah-majalah atau brosur-brosur, surat kabar dan lain-lain yang membahas tentang kedisiplinan; (3) peserta didik dapat memberikan penejelasan kepada teman-teman sekelasnya di sekolah, atau kepada adik-adiknya di rumah atau kepada anggota masyarakat lainnya, tentang kedisiplinan diterapkan, baik di sekolah, di rumah maupun di tengah-tengah kehidupan masyarakat; (4) peserta didik menganjurkan kepada teman-teman sekolah atau adik-adiknya, agar berlaku disiplin baik di sekolah, di rumah maupun di tengah-tengah kehidupan masyarakat; (5) peserta didik dapat memberikan contoh-contoh kedisiplinan di sekolah, seperti datang ke sekolah sebelum pelajaran di mulai, tertib dalam mengenakan seragam sekolah, tertib dan tenag dalam mengikuti pelajaran, di siplin dalam mengikuti tata tertib yang telah ditentukan oleh sekolah, dan lain-lain; (6) peserta didik dapat memberikan contoh kedisiplinan di rumah, seperti disiplin dalam belajar, disiplin dalam mennjalannkan ibadah shalat, ibadah puasa, di siplin dalam menjaga kebersihan rumah, pekarangan, saluran air, dan lain-lain; (7) peserta didik dapat memberikan contoh kedisiplinan di tengah-tengah kehidupan masyarakat, seperti menaati rambu-rambu lalu lintas, tidak kebut-kebutan, dengan suka rela mau antri waktu membeli karcis, dan lain-lain, dan (8) peserta didik mengamalkan dengan konsekuen kedisiplinan dalam belajar, kedisiplinan dalam beribadah, kedisiplinan dalam menaati peraturan lalu lintas, dan sebagainya.

2.3.2 Ciri-ciri Ranah Penilaian Psikomotor

Ranah psikomotor berhubungan dengan hasil belajar yang pencapaiannya melalui keterampilan manipulasi yang melibatkan otot dan kekuatan fisik. Ranah psikomotor adalah ranah yang berhubungan aktivitas fisik, misalnya; menulis, memukul, melompat dan lain sebagainya.

Tabel  Kaitan antara kegiatan pembelajaran dengan domain tingkatan aspek Psikomotorik

Tingkat Deskripsi
I. Gerakan Refleks Arti: gerakan refleks adalah basis semua perilaku bergerak, respons terhadap stimulus tanpa sadar.

Misalnya:melompat,menunduk,berjalan,menggerakkan leher dan kepala, menggenggam, memegang

Contoh kegiatan belajar:

– mengupas mangga dengan pisau

– memotong dahan bunga

– menampilkan ekspresi yang berbeda

– meniru gerakan polisi lalulintas, juru parkir

– meniru gerakan daun berbagai tumbuhan yang diterpa angin

II Gerakan dasar (basic fundamental movements) Arti: gerakan ini muncul tanpa latihan tapi dapat Diperhalus melalui praktik gerakan ini terpola dan dapat ditebak

Contoh kegiatan belajar:

  • · contoh gerakan tak berpindah: bergoyang, membungkuk, merentang, mendorong, menarik, memeluk, berputar
  • · contoh gerakan berpindah: merangkak, maju perlahan-lahan, muluncur, berjalan, berlari, meloncat-loncat, berputar mengitari, memanjat.
  • · Contoh gerakan manipulasi: menyusun balok/blok, menggunting, menggambar dengan krayon, memegang dan melepas objek, blok atau mainan.
  • · Keterampilan gerak tangan dan jari-jari: memainkan bola, menggambar.
III. Gerakan Persepsi

( Perceptual obilities)

Arti : Gerakan sudah lebih meningkat karena dibantu kemampuan perseptual

Contoh kegiatan belajar:

¨   menangkap bola, mendrible bola

¨   melompat dari satu petak ke petak lain dengan 1 kali sambil menjaga keseimbangan

¨   memilih satu objek kecil dari sekelompok objek yang ukurannya bervariasi

¨   membaca melihat terbangnya bola pingpong

¨   melihat gerakan pendulun menggambar simbol geometri

¨   menulis alfabet

¨   mengulangi pola gerak tarian

¨   memukul bola tenis, pingpong

¨   membedakan bunyi beragam alat musik

¨   membedakan suara berbagai binatang

¨   mengulangi ritme lagu yang pernah didengar

¨   membedakan berbagai tekstur dengan meraba

 

IV. Gerakan Kemampuan fisik (Psycal abilities) Arti: gerak lebih efisien, berkembang melalui kematangan dan belajar

Contoh kegiatan belajar:

menggerakkan otot/sekelompok otot selama waktu tertentu

berlari jauh

mengangkat beban

menarik-mendorong

melakukan push-up

kegiatan memperkuat lengan, kaki dan perut

menari

melakukan senam

melakukan gerakan pesenam, pemain biola, pemain bola

V. gerakan terampil (Skilled movements) Arti: dapat mengontrol berbagai tingkat gerak – terampil, tangkas, cekatan melakukan gerakan yang sulit dan rumit (kompleks)

Contoh kegiatan belajar:

  • melakukan gerakan terampil berbagai cabang olahraga
  • menari, berdansa
  • membuat kerajinan tangan
  • menggergaji
  • mengetik
  • bermain piano
  • memanah
  • skating
  • melakukan gerak akrobatik
  • melakukan koprol yang sulit
VI. Gerakan indah dan kreatif

(Non-discursive communicatio)

Arti: mengkomunikasikan perasaan melalui gerakan

–       gerak estetik: gerakan-gerakan terampil yang efisien dan indah

–       gerakan kreatif: gerakan-gerakan pada tingkat tertinggi untuk mengkomunikasikan peran

Contoh kegiatan belajar:

v       kerja seni yang bermutu (membuat patung, melukis, menari baletr

v        melakukan senam tingkat tinggi

v        bermain drama (acting)

v       keterampilan olahraga tingkat tinggi

 

2.3.3 Contoh Pengukuran Ranah Penilaian Psikomotor

Ada beberapa ahli yang menjelaskan cara menilai hasil belajar psikomotor. Ryan (1980) menjelaskan bahwa hasil belajar keterampilan dapat diukur melalui (1) pengamatan langsung dan penilaian tingkah laku peserta didik selama proses pembelajaran praktik berlangsung, (2) sesudah mengikuti pembelajaran, yaitu dengan jalan memberikan tes kepada peserta didik untuk mengukur pengetahuan, keterampilan, dan sikap, (3) beberapa waktu sesudah pembelajaran selesai dan kelak dalam lingkungan kerjanya. Sementara itu Leighbody (1968) berpendapat bahwa penilaian hasil belajar psikomotor mencakup: (1) kemampuan menggunakan alat dan sikap kerja, (2) kemampuan menganalisis suatu pekerjaan dan menyusun urut-urutan pengerjaan, (3) kecepatan mengerjakan tugas, (4) kemampuan membaca gambar dan atau simbol, (5) keserasian bentuk dengan yang diharapkan dan atau ukuran yang telah ditentukan.

Dari penjelasan di atas dapat dirangkum bahwa dalam penilaian hasil belajar psikomotor atau keterampilan harus mencakup persiapan, proses, dan produk. Penilaian dapat dilakukan pada saat proses berlangsung yaitu pada waktu peserta didik melakukan praktik, atau sesudah proses berlangsung dengan cara mengetes peserta didik.

Penilaian psikomotorik dapat dilakukan dengan menggunakan observasi   atau pengamatan. Observasi  sebagai alat penilaian banyak digunakan untuk mengukur tingkah laku individu ataupun proses terjadinya suatu kegiatan yang dapat diamati, baik dalam situasi yang sebenarnya maupun dalam situasi buatan. Dengan kata lain, observasi dapat mengukur atau menilai hasil dan proses belajar atau psikomotorik. Misalnya tingkah laku peserta didik ketika praktik, kegiatan diskusi peserta didik, partisipasi peserta didik dalam simulasi, dan penggunaan alins ketika belajar.

Observasi  dilakukan pada saat proses kegiatan itu berlangsung. Pengamat terlebih dahulu harus menetapkan kisi-kisi  tingkah laku apa yang hendak diobservasinya, lalu dibuat pedoman agar memudahkan dalam pengisian observasi. Pengisian hasil observasi dalam pedoman yang dibuat sebenarnya bisa diisi secara bebas dalam bentuk uraian mengenai  tingkah laku   yang tampak  untuk diobservasi, bisa pula dalam bentuk memberi tanda cek (√) pada kolom jawaban hasil observasi.

Tes untuk mengukur ranah psikomotorik adalah tes untuk mengukur penampilan atau kinerja (performance) yang telah dikuasai oleh peserta didik. Tes tersebut   dapat berupa tes paper and  pencil, tes identifikasi, tes simulasi, dan tes unjuk kerja.

1)    Tes simulasi

Kegiatan psikomotorik yang dilakukan melalui tes ini,           jika tidak ada alat yang sesungguhnya yang dapat dipakai untuk memperagakan penampilan peserta didik, sehingga  peserta didik dapat dinilai tentang penguasaan keterampilan dengan bantuan peralatan tiruan atau berperaga seolah-olah  menggunakan suatu alat yang sebenarnya.

2)    Tes unjuk kerja (work sample)

Kegiatan psikomotorik yang dilakukan melalui tes ini, dilakukan dengan  sesungguhnya dan tujuannya untuk mengetahui apakah peserta didik sudah menguasai/terampil menggunakan alat tersebut. Misalnya dalam melakukan praktik pengaturan lalu lintas lalu lintas di lapangan yang sebenarnya

Tes simulasi dan tes unjuk kerja, semuanya dapat diperoleh dengan observasi langsung ketika peserta didik melakukan kegiatan pembelajaran. Lembar observasi dapat menggunakan   daftar cek (check-list) ataupun  skala penilaian (rating scale).  Psikomotorik  yang diukur dapat menggunakan alat ukur berupa skala penilaian terentang dari  sangat baik, baik, kurang, kurang, dan tidak baik.

Dengan kata lain, kegiatan belajar yang banyak berhubungan dengan ranah psikomotor adalah praktik di aula/lapangan dan praktikum di laboratorium. Dalam kegiatan-kegiatan praktik itu juga ada ranah kognitif dan afektifnya, namun hanya sedikit bila dibandingkan dengan ranah psikomotor. Pengukuran hasil belajar ranah psikomotor menggunakan tes unjuk kerja atau lembar tugas.

Contohnya kemampuan psikomotor yang dibina dalam belajar matematika misalnya berkaitan dengan kemampuan mengukur (dengan satuan tertentu, baik satuan baku maupun tidak baku), menggambar bentuk-bentuk geometri (bangun datar, bangun ruang, garis, sudut,dll) atau tanpa alat. Contoh lainnya, siswa dibina kompetensinya menyangkut kemampuan melukis jaring-jaring kubus. Kemampuan dalam melukis jaring-jaring kubus secara psikomotor dapat dilihat dari gerak tangan siswa dalam menggunakan peralatan (jangka dan penggaris) saat melukis. Secara teknis penilaian ranah psikomotor dapat dilakukan dengan pengamatan (perlu lembar pengamatan) dan tes perbuatan.

Dalam ranah psikomotorik yang diukur meliputi (1) gerak refleks, (2) gerak dasar fundamen, (3) keterampilan perseptual; diskriminasi kinestetik, diskriminasi visual, diskriminasi auditoris, diskriminasi taktis, keterampilan perseptual yang terkoordinasi, (4) keterampilan fisik, (5) gerakan terampil, (6) komunikasi non diskusi (tanpa bahasa-melalui gerakan) meliputi: gerakan ekspresif, gerakan interprestatif.

Lembar observasi

Beri Tanda (√)

Nama Siswa Mengerjakan Tugas (On-Task) Tidak Mengerjakan Tugas (Off-Task) Catatan Guru
Damar

 

 

 

Ayu

 

 

 

Dst…..

 

 

 

Tabel Instrumen (alat) Asesmen Kinerja (unjuk kerja) Berpidato dengan numerical Rating Scale

Nama : …………………………………………….

Kelas : …………………………………………….

Petunjuk:

Berilah skor untuk setiap aspek kinerja yang sesuai dengan ketentuan berikut:

(4) bila aspek tersebut dilakukan dengan benar dan cepat

(3) bila aspek tersebut dilakaukan dengan benar tapi lama

(2) bila aspek tersebut dilakukan selesai tetapi salah

(1) bila dilakukan tapi tidak selesai

( 0 = tidak ada usaha)

No Aspek yang dinilai Skor
4 3 2 1
1. Berdiri tegak menghadap penonton

 

 

 

 

2. Mengubah ekspresi wjah sesuai dengan pernyataan

 

 

 

 

3. Berbicara dengan kata-kata yang jelas

 

 

 

 

4. Tidak mengulang-ulang pernyataan

 

 

 

 

5. Berbicara cukup keras untuk didengar penonton

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PENUTUP

1)   Ranah kognitif adalah ranah yang mencakup kegiatan mental (otak).

2)   Ranah afektif adalah ranah yang berkaitan dengan sikap dan nilai. Ranah afektif mencakup watak perilaku seperti perasaan, minat, sikap, emosi, dan nilai. Ranah afektif menjadi lebih rinci lagi ke dalam lima jenjang, yaitu: (1) receiving (2) responding (3) valuing (4) organization (5) characterization by evalue or calue complex.

3)   Ranah psikomotor merupakan ranah yang berkaitan dengan keterampilan (skill) tau kemampuan bertindak setelah seseorang menerima pengalaman belajar tertentu. Ranah psikomotor adalah ranah yang berhubungan dengan aktivitas fisik, misalnya lari, melompat, melukis, menari, memukul, dan sebagainya. Hasil belajar ranah psikomotor dikemukakan oleh Simpson (1956) yang menyatakan bahwa hasil belajar psikomotor ini tampak dalam bentuk keterampilan (skill) dan kemampuan bertindak individu.

4)   Aspek kognitif berhubungan dengan kemampuan berfikir termasuk di dalamnya kemampuan memahami, menghafal, mengaplikasi, menganalisis, mensistesis dan kemampuan mengevaluasi

5)   Ciri ranah penilaian afektif yaitu pemikiran atau perilaku harus memiliki dua kriteria untuk diklasifikasikan sebagai ranah afektif (Andersen, 1981:4). Pertama, perilaku melibatkan perasaan dan emosi seseorang. Kedua, perilaku harus tipikal perilaku seseorang. Kriteria lain yang termasuk ranah afektif adalah intensitas, arah, dan target. Intensitas menyatakan derajat atau kekuatan dari perasaan. Beberapa perasaan lebih kuat dari yang lain, misalnya cinta lebih kuat dari senang atau suka. Sebagian orang kemungkinan memiliki perasaan yang lebih kuat dibanding yang lain. Arah perasaan berkaitan dengan orientasi positif atau negatif dari perasaan yang menunjukkan apakah perasaan itu baik atau buruk. Misalnya senang pada pelajaran dimaknai positif, sedang kecemasan dimaknai negatif. Bila intensitas dan arah perasaan ditinjau bersama-sama, maka karakteristik afektif berada dalam suatu skala yang kontinum. Target mengacu pada objek, aktivitas, atau ide sebagai arah dari perasaan.

6)   Ranah kogniti berhubungan erat dengan kemampuan berfikir, termasuk di dalamnya kemampuan menghafal, rnemahami, mengaplikasi, menganalisis, mensintesis dan kemampuan mengevaluasi

7)   Cakupan yang diukur dalam ranah Kognitif  adalah: Ingatan (C1), Pemahaman (C2), Penerapan (C3), Analisis (C4), Sintesis (C5),  dan Evaluasi (C6).

8)   Ranah afektif tidak dapat diukur seperti halnya ranah kognitif, karena dalam ranah afektif kemampuan yang diukur adalah: Menerima (memperhatikan), Merespon, Menghargai, Mengorganisasi.

9)   Hasil belajar keterampilan (psikomotor) dapat diukur melalui: (1) pengamatan langsung dan penilaian tingkah laku peserta didik selama proses pembelajaran praktik berlangsung, (2) sesudah mengikuti pembelajaran, yaitu dengan jalan memberikan tes kepada peserta didik untuk mengukur pengetahuan, keterampilan, dan sikap, (3) beberapa waktu sesudah pembelajaran selesai dan kelak dalam lingkungan kerjanya. Dalam ranah psikomotorik yang diukur meliputi (1) gerak refleks, (2) gerak dasar fundamen, (3) keterampilan perseptual; diskriminasi kinestetik, diskriminasi visual, diskriminasi auditoris, diskriminasi taktis, keterampilan perseptual yang terkoordinasi, (4) keterampilan fisik, (5) gerakan terampil, (6) komunikasi non diskusi (tanpa bahasa-melalui gerakan) meliputi: gerakan ekspresif, gerakan interprestatif

DAFTAR PUSTAKA

Anonymous. 2009. “Aspek Penilaian dalam KTSP Bag 1 (Aspek Kognitif)”. (Online) http://massofa.wordpress.com/feed/. Diakses Tanggal 10 Oktober 2009

Anonymous. 2009. “Sistem Penilaian”. (Online) http://smak.yski.info/. Diakses Tanggal 10 Oktober 2009

Anonymous. 2009. “Pengembnagan Perangkat Penilaian Psikomotor dan Prosedur Penilaian”.(Online) http://nurmanspd.wordpress.com/2009/09/17/pengembangan-perangkat-penilaian-psikomotor/. Diakses Tanggal 10 Oktober 2009

Anonymous. 2009. “Pengukuran Ranah Kognitif, Afektif, dan Psikomotor”. (Online) http://hadirukiyah.blogspot.com/2009/08/pengukuran-ranah-kognitif-afektif-dan.html. Diakses Tanggal 10 Oktober 2009

Anonymous. 2009. “Pengembangan Perangkat Penilaian Afektif”. (Online) http://akhmadsudrajat.wordpress.com/2008/08/15/pengertian-fungsi-dan-mekanisme-penetapan-kriteria-ketuntasan-minimal-kkm/. Diakses Tanggal 10 Oktober 2009

Anonymous. 2009. “Penilaian Ranah Psikomotorik Siswa”. (Online) http://delapanratus.blogspot.com/2009/04/penilaian-ranah-psikomotorik-siswa.html. Diakses Tanggal 10 Oktober 2009

Sudjana, Nana. 1989. Penilaian Hasil Proses Belajar. Bandung: PT. Remaja Rosdakarya Offset

Sri Wardani. 2004. Penilaian Pembelajaran Matematika Berbasis Kompetensi. Yogyakarta: Departemen Pendidikan Nasional

Sudjono, Anas. 2008. Pengantar Evaluasi Pendidikan. Jakarta: PT.RajaGrafindo Persada.

IKLAN

CV ZAIF ILMIAH (BIRO JASA PEMBUATAN PTK, KARYA ILMIAH, PPT PEMBELAJARAN, RPP, SILABUS, DLL))

Ingin membuat PTK tapi merasa sulit???? Ingin membuat Karya Ilmiah tetapi kesusahan??? Ingin membuat presentasi powerpoint untu pembelajaran merasa sulit dan gaptek????? Ingin membuat RPP dan silabus serta perangkat pembelajaran tetapi susah????? Kini tidak usah bingung lagi ada Pak Zaif yang siap membantu berbagai kesulitan dan kesusahan yang anda hadapi di bidang pendidikan di CV Zaif Ilmiah semua masalah anda di bidang pendidikan akan dibantu, ingin membuat PTK saya bantu, membuat Karya Ilmiah saya bantu, membuat berbagai perangkat pembelajaran saya bantu untuk info lebih lanjut hubungi Contact Person 081938633462 INSYA ALLAH semua kesulitan dan kesusahan anda akan ada solusinya jangan lupa hubungi Pak Zaif di nomer 081938633462 ATAU lewat E-mail di zaifbio@gmail.com. DIJAMIN PTK ATAU KARYA ILMIAHNYA BARU LANGSUNG DIBIKINKAN BUKAN STOK LAMA ATAU COPY PASTE SEHINGGA DIJAMIN ORIGINALITASNYA TERIMA KASIH DAN SALAM GURU SUKSES PAK ZAIF

IKLAN

Ingin kaos bertema PENDIDIKAN DAN PEMBELAJARAN?, bosan dengan kaos yang ada?, ingin mengedukasi keluarga atau murid dengan pembelajaran. HANYA KAMI SATU-SATUNYA DI INDONESIA PERTAMA KALI KAOS BERTEMA PENDIDIKAN DAN PEMBELAJARAN COCOK DIPAKAI UNTUK SEMUA KALANGAN DAN MEMBERI KESAN EDUKASI DAN PEMBELAJARAN DALAM SETIAP PEMAKAIAANYA

Jangan lupa kunjungi web kami di http://os-kaos.com/ untuk melihat berbagai koleksi kaos pendidikan dan pembelajaran dari kami like juga FP kami di https://www.facebook.com/oskaos1745

Fast Respon CP : 081938633462 dan 082331864747

ee9f2fe2-288a-4081-829e-cac8538debd6wallpaper

11/15/2009 Posted by | Evaluasi Pendidikan | 147 Komentar

VARIASI GENETIK SEBAGAI DASAR EVOLUSI, MUTASI GEN, FREKUENSI GEN DALAM POPULASI, DAN HUKUM HARDY-WEINBERG

VARIASI GENETIK SEBAGAI DASAR EVOLUSI, MUTASI GEN, FREKUENSI GEN DALAM POPULASI, DAN HUKUM HARDY-WEINBERG

Disusun Oleh:

Miftakhul Jannah      (07330042)

Kurnia Dewi P.S         (07330047)

Qurrotu Aini               (07330072)

Huzaifah Hamid         (07330075)

JURUSAN PENDIDIKAN BIOLOGI

FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN

UNIVERSITAS MUHAMMADIYAH MALANG

MALANG

2009

KATA PENGANTAR

Puji syukur kehadirat Allah SWT, atas limpahan rahmat, karunia, hidayah, inayah dan maghfirah-Nya, sehingga kami dapat menyelesaikan makalah ini. Makalah ini merupakan sebuah analisis dari tim penulis tentang mata kuliah Evolusi Organik terutama dalam hal variasi genetik sebagai dasar evolusi, mutasi gen, frekuensi gen dalam populasi, dan hukum hardy-weinberg Terima kasih yang sebesar-besarnya kami sampaikan kepada:

  1. Drs Lud Waluyo, M.Kes selaku dosen Pembina Mata Kuliah Evolusi Organik
  2. Semua  pihak yang telah membantu penyusunan makalah ini

 

Makalah  ini hanyalah sebuah sumbangsih pemikiran anak bangsa yang saat ini mengemban misi agent  of change sebagai mahasiswa. Tulisan inipun kami kira masih terlalu jauh dari sempurna, sehingga saran dan kritik yang konstruktif sangat diharapkan.

 

Malang, 13 November  2009

 

TIM PENULIS

BAB I

PENDAHULUAN

– Latar Belakang

Akar pemikiran evolusionis muncul sezaman dengan keyakinan dogmatis yang berusaha keras mengingkari penciptaan. Mayoritas filsuf penganut pagan di zaman Yunani kuno mempertahankan gagasan evolusi. Jika kita mengamati sejarah filsafat, kita akan melihat bahwa gagasan evolusi telah menopang banyak filsafat pagan.

Akan tetapi bukan filsafat pagan kuno ini yang telah berperan penting dalam kelahiran dan perkembangan ilmu pengetahuan modern, melainkan keimanan kepada Tuhan. Pada umumnya mereka yang memelopori ilmu pengetahuan modern mempercayai keberadaan-Nya. Seraya mempelajari ilmu pengetahuan, mereka berusaha menyingkap rahasia jagat raya yang telah diciptakan Tuhan dan mengungkap hukum-hukum dan detail-detail dalam ciptaan-Nya. Ahli Astronomi seperti Leonardo da Vinci, Copernicus, Keppler dan Galileo; bapak paleontologi, Cuvier; perintis botani dan zoologi, Linnaeus; dan Isaac Newton, yang dijuluki sebagai “ilmuwan terbesar yang pernah ada”, semua mempelajari ilmu pengetahuan dengan tidak

hanya meyakini keberadaan Tuhan, tetapi juga bahwa keseluruhan alam semesta adalah hasil ciptaan-Nya. Albert Einstein, yang dianggap sebagai orang paling jenius di zaman kita, adalah seorang ilmuwan yang mempercayai Tuhan dan menyatakan, “Saya tidak bisa membayangkan ada ilmuwan sejati tanpa keimanan mendalam seperti itu. Ibaratnya: ilmu pengetahuan tanpa agama akan pincang.”

Salah seorang pendiri fisika modern, dokter asal Jerman, Max Planck mengatakan bahwa setiap orang, yang mempelajari ilmu pengetahuan dengan sungguh-sungguh, akan membaca pada gerbang istana ilmu pengetahuan sebuah kata: “Berimanlah”. Keimanan adalah atribut penting seorang ilmuwan.

Teori evolusi merupakan buah filsafat materialistis yang muncul bersamaan dengan kebangkitan filsafatfilsafat materialistis kuno dan kemudian menyebar luas di abad ke-19. Seperti telah disebutkan sebelumnya, paham materialisme berusaha menjelaskan alam semata melalui faktor-faktor materi. Karena menolak penciptaan, pandangan ini menyatakan bahwa segala sesuatu, hidup ataupun tak hidup, muncul tidak melalui penciptaan tetapi dari sebuah peristiwa kebetulan yang kemudian mencapai kondisi teratur. Akan tetapi, akal manusia sedemikian terstruktur sehingga mampu memahami keberadaan sebuah kehendak yang mengatur di mana pun ia menemukan keteraturan. Filsafat materialistis, yang bertentangan dengan karakteristik paling mendasar akal manusia ini, memunculkan “teori evolusi” di pertengahan abad ke-19.

 

–  Rumusan Masalah

Berdasarkan latar belakang diatas maka dapat diambil rumusan masalah sebagai berikut:

v     Apakah Variasi Genetik Merupakan Dasar dari Evolusi ?

v     Apakah hubungan mutasi gen, frekuensi gen dalam populasi, dan hukum Hardy Weinberg dalam evolusi?

–  Tujuan Penulisan

Penulisan ini bertujuan untuk mengetahui apakah variase genetik merupakan dasar dari evolusi dan hubungan  antara mutasi gen, frekuensi gen dalam populasi, dan hukum Hardy-Weinberg dalam evolusi

–  Manfaat Penulisan

Penulisan ini memberikan beberapa manfaat terutama dalam aspek akademis dimana masyarakat dapat mengetahui apakah variase genetik merupakan dasar dari evolusi dan hubungan  antara mutasi gen, frekuensi gen dalam populasi, dan hukum Hardy-Weinberg dalam evolusi

 

BAB II

PEMBAHASAN

A. Variasi Genetik dan Evolusi

  1. 1. Timbulnya Variabilitas dan Sebab-sebab Variabilitas

Variasi, istilah yang digunakan dalam ilmu genetika, merujuk pada peristiwa genetis yang menyebabkan individu atau kelompok spesies tertentu memiliki karakteristik berbeda satu sama lain. Sebagai contoh, pada dasarnya semua orang di bumi membawa informasi genetis sama. Namun ada yang bermata sipit, berambut merah, berhidung mancung, atau ber-tubuh pendek, tergantung pada potensi variasi informasi genetisnya. Evolusionis menyebut variasi dalam suatu spesies sebagai bukti kebenaran teorinya. Namun, variasi bukanlah bukti evolusi, karena variasi hanya hasil aneka kombinasi informasi genetis yang sudah ada, dan tidak menambahkan karakteristik baru pada informasi genetis.

Variasi selalu terjadi dalam batasan informasi genetis yang ada. Dalam ilmu genetika, batas-batas ini disebut “kelompok gen” (gene pool). Variasi menyebabkan semua karakteristik yang ada di dalam kelompok gen suatu spesies bisa muncul dengan beragam cara. Misalnya pada suatu spesies reptil, variasi menyebabkan kemunculan varietas yang relatif berekor panjang atau berkaki pendek, karena baik informasi tentang kaki pendek maupun panjang terdapat dalam kantung gen.

Untuk melihat bagaimana keanekaragaman kita harus mulai dari suatu struktur yang paling kecil, tetapi sangat penting. Struktur tersebut adalah AND. ADN terdiri dari 4 macam asam nukleat, yakni adenine (A), sitosin, (C), guanine (G), dan timidin (T). Bila asam amino terakhir diganti Urasil (U), maka asam nukleatnya dinamakan ARN (asam ribonuleat). Keempat asam nukleat akan membentuk 20 macam asam amino esensial. Kini diketahui bahwa kombinasi 3 dari keempat macam asam nukleat akan membentuk satu asam amino. Kombinasi ini dikenal dengan kode genetic. Apabila ada 2 macam asam nukleat yang membentuk satu asam amino, maka hanya akan diperoleh 16 macam kombinasi untuk 16 asam amino, sehingga tidak akan ditemukan 4 macam asam amino esensial yang lain.

Secara umum, setiap asam amino dikode oleh sekitar 3 macam kombinasi. Ada asam amino dikode oleh satu kombinasi, sedangkan asam amino yang lain dikode oleh 6 macam kombinasi. Dengan demikian maka suatu asam amino dapat dihasilkan lebih banyak, bukan saja karena kode tersebut terdapat berulang-ulang, tetapi karena ada lebih bayak kemungkinan. Yang menjadi masalah sekarang adalah dari mana terjadinya keanekaragaman. Adanya satu kode genetic atau lebih belum dapat menerangkan terjadinya keanekaragaman.

Sejak masa lampau, orang sudah mempertanyakan mengapa suatu umur organisme sejenis tidak sama. Hal ini jelas terlihat apabila kita memelihara tumbuhan atau hewan, atau kita melihat pada alam sekitar kita dan diri kita sendiri sebagai manusia. Keluarga pada zaman dahulu umumnya mempunyai anak lebih dari dua, demikian juga dengan hewan. Pada katak, dapat kita lihat bahwa jumlah telur yang dihasilkan berjumlah berates-ratus butir. Bila semuanya hidup dan mampu berkembang biak, mungkin kini seluruh permukaan bumi dipenuhi oleh katak atau organism lainnya. Namun hal ini tidak terjadi, hanya individu yang sehat dan kuat, atau hampir sempurna dalam semua aspek kehidupanlah yang dapat bertahan. Jadi alam sudah menyeleksi, mana yang baik dan mana yang tidak baik atau kurang baik.

Ikan di Aquarium yang selalu diberi makanan cukup, semua kondisi hidup dicukupkan. Bila semua individu kita seleksi sehingga dapat dikategorikan sebagai sama dan hampir sempurna sekalipun, ternyata jumlahnya hanya bertambah pada satu periode saja. Padahal, semua pasangan yang hidup dalam akuarium tersebut sehat dan berpotensi untuk berkembang biak. Ada satu hal yang menyebabkan ikan-ikan tersebut tidak berkembang biak, yakni yang tidak cukup. Ikan-ikan sepertinya tahu, bahwa bila mereka terus berkembang biak, yakni yang tidak cukup. Ikan-ikan sepertinya tahu, bahwa bila mereka terus berkembang biak, maka tidak dapat bergerak bebas. Hal ini yang kita sebut sebagai daya dukung dari akuarium tersebut. Jadi, selain struktur biologis yang hampir sempurna, makanan, daya dukung tempat ikan menentukan sukses tidaknya suatu jenis di muka bumi ini.

Setiap organism di dunia mempunyai kisaran toleransi. Misalnya bayi mempunyai kisaran toleransi suhu tubuh 350 – 420 C. pada manusia dewasa, biasanya batas kisaran tersebut adalah 36-410C, di luar batas kisaran tersebut manusia tidak dapat bertahan dan akan mati. Kisaran suatu spesies tidak saja terbatas pada toleransi, namun dapat pula menyangkut aspek-aspek saja. Semua atau hampir semua aspek-aspek tersebut dikode oleh satu gen. contoh variabilitas antara lain:

  • Wajah manusia tidak ada yang tepat sama

Sebenarnya hal ini berlaku pada makhluk hidup yang lain; hewan, tumbuhan, cendawan, Protista dan Monera. Namun mata kita tidak dibiasakan untuk dapat membedakan.

–         Adanya variasi warna tubuh yang terdapat pada ikan, kucing, kuda, kerbau, dan organisme yang lain.

–         Adanya golongan darah yang bermacam-macam.

–         Adanya bermacam-macam mutan.

–         Adanya ekotip.

Jadi variasi itu memang ada. Adanya variasi hanya dapat diterangkan secara adaptasi dan secara genetic. Variasi adaptasi dapat kita lihat pada olahragawan yang otot-ototnya lebih terlatih sehingga berukuran lebih besar dari kebanyakan orang. Namun variasi adaptasi tidak dapat diturunkan secara langsung kepada keturunanya. Variasi genetislah merupakan satu-satnya kemungkinan yang dapat menerangkan proses evolusi. Secara genetis, variasi dapat timbul akibat mutasi.

Fenotipe suatu individu organisme dihasilkan dari genotipe dan pengaruh lingkungan organisme tersebut. Variasi fenotipe yang substansial pada sebuah populasi diakibatkan oleh perbedaan genotipenya. Sintesis evolusioner modern mendefinisikan evolusi sebagai perubahan dari waktu ke waktu pada variasi genetika ini. Frekuensi alel tertentu akan berfluktuasi, menjadi lebih umum atau kurang umum relatif terhadap bentuk lain gen itu. Gaya dorong evolusioner bekerja dengan mendorong perubahan pada frekuensi alel ini ke satu arah atau lainnya. Variasi menghilang ketika sebuah alel mencapai titik fiksasi, yakni ketika ia menghilang dari suatu populasi ataupun ia telah menggantikan keseluruhan alel leluhur.

Variasi berasal dari mutasi bahan genetika, migrasi antar populasi (aliran gen), dan perubahan susunan gen melalui reproduksi seksual. Variasi juga datang dari tukar ganti gen antara spesies yang berbeda; contohnya melalui transfer gen horizontal pada bakteria dan hibridisasi pada tanaman. Walaupun terdapat variasi yang terjadi secara terus menerus melalui proses-proses ini, kebanyakan genom spesies adalah identik pada seluruh individu spesies tersebut. Namun, bahkan perubahan kecil pada genotipe dapat mengakibatkan perubahan yang dramatis pada fenotipenya. Misalnya simpanse dan manusia hanya berbeda pada 5% genomnya.

 

Variasi pada individu disebabkan oleh :

(1) Variasi genetik yaitu variasi yang disebabkan oleh perubahan genetic (terutama mutasi) dan diwariskan pada keturunannya lewat inti sel dalam gamet.

(2) Variasi lingkungan yaitu variasi yang disebabkan oleh perubahan lingkungan, sedangkan bahan genetiknya tetap (contoh intensitas cahaya matahari, suhu, kandungan garam tanah, dll) dan tidak diwariskan.

Variasi genetik dalam populasi alamiah sempat membingungkan Darwin. Hal ini terjadi karena reproduksi sel belum dikenal. Akan tetapi, pada tahun 1908 kebingungan itu terjawab oleh G.H. Hardy seorang matematikawan Inggris dan G.Weinberg seorang fisikawan Jerman. Hardy dan Wienberg menyatakan bahwa dalam populasi besar di mana perkawinan terjadi secara random dan tidak adanya kekuatan yang mengubah perbandingan alela dalam lokus, perbandingan genotip alami selalu konstan dari generasi ke generasi. Pernyataan tersebut dikenal dengan hukum Perbandingan Hardy-Weinberg.

Kenyataan di alam tidak pernah ditemukan individu yang sama persis, meskipun dalam satu keturunan. Adanya perbedaan tersebut menimbulkan variasi. Individu yang mengalami variasi disebut varian. Darwin berpendapat variasi-variasi tersebut dipengaruhi oleh faktor dari luar, missal makanan, suhu, dan tanah. Jika individu yang telah mengalami perubahan berada pada tempat yang berbeda dari asalnya, dalam perkembangannya akan mengalami perubahan yang sifatnya menetap dan akan makin berbeda dengan nenek moyang dari tempat asal-usulnya. Darwin juga berpendapat pada peristiwa domestikasi spesies yang dimuliakan, manusia berasal dari spesies liar yang kemudian mengalami perubahan yang akhirnya terjadi variasi. Terjadinya variasi digunakan sebagai petunjuk adanya evolusi yang mengarah pada terbentuknya spesies-spesies baru.

Variasi, juga berarti, berarti sebuah peristiwa genetik yang menyebabkan individu atau kelompok dari satu jenis atau spesies memiliki ciri yang berbeda satu sama lain. Misalnya, semua manusia di bumi pada dasarnya membawa informasi genetik yang sama, namun sebagian bermata sipit, sebagian berambut merah, sebagian berhidung mancung, dan sebagian lain bertubuh pendek, semua tergantung dari seberapa besar potensi keragaman dari informasi genetik ini.

Variasi bukan merupakan bukti bagi evolusi karena variasi tidak lain hanyalah perwujudan dari berbagai kombinasi dari informasi genetik yang telah ada, dan variasi tidak menambahkan ciri baru apapun pada informasi genetik tersebut. Kemudian, pertanyaan penting bagi teori evolusi adalah bagaimana informasi yang benar-benar baru dapat muncul untuk menghasilkan spesies yang baru pula.

Variasi selalu terjadi dalam batas informasi genetik [yang ada]. Dalam ilmu genetika, batasan ini disebut “koleksi gen.” Semua sifat yang ada dalam koleksi gen suatu spesies mungkin akan muncul dalam berbagai bentuk karena variasi. Sebagai contoh, sebagai akibat dari variasi, jenis dengan ekor yang lebih panjang atau kaki lebih pendek mungkin akan muncul pada suatu spesies reptilia, karena informasi bagi kedua bentuk kaki-panjang dan kaki-pendek ada dalam kumpulan gen spesies tersebut. Akan tetapi, variasi tidak merubah reptilia menjadi burung dengan menambahkan sayap atau bulu pada mereka, atau dengan merubah metabolisme mereka. Perubahan seperti itu memerlukan penambahan pada informasi genetik makhluk hdup, yang tentunya tidak mungkin terjadi melalui variasi.

Darwin tidak menyadari kenyataan ini ketika ia merumuskan teorinya. Dia berpikir bahwa tidak ada batasan dalam variasi. Dalam sebuah makalah yang ditulisnya pada tahun 1844, ia menyatakan: “Adanya batasan dalam variasi di alam adalah anggapan dari sebagian besar penulis, namun saya tidak bisa menemukan satu kenyataan pun yang mendasari keyakinan ini.” Dalam The Origin of Species ia menyebutkan berbagai contoh variasi sebagai bukti paling penting bagi teorinya.

Misalnya, menurut Darwin, para peternak yang mengawinkan berbagai ras sapi untuk menghasilkan ras baru yang menghasilkan susu lebih banyak, pada akhirnya akan mengubah mereka menjadi spesies yang berbeda. Gagasan Darwin tentang “variasi tak terbatas” sangat jelas terlihat pada kalimat dari The Origin of Species berikut ini:

Saya tidak melihat adanya masalah pada [gagasan tentang] suatu ras beruang yang berubah, oleh seleksi alam, menjadi lebih [cocok hidup di] laut dalam bentuk dan perilaku mereka, dengan mulut yang semakin melebar, sampai dihasilkan suatu makhluk sebesar paus.

Alasan mengapa Darwin mengambil contoh yang tidak masuk akal ini adalah karena pemahaman ilmu pengetahuan yang masih kuno pada masanya. Setelah itu, pada abad ke-20, ilmu pengetahuan telah mengajukan prinsip “kestabilan genetik” (homeostasis genetik), berdasarkan hasil percobaan terhadap makhluk hidup. Prinsip ini menyatakan bahwa, karena semua usaha pengawinan untuk mengubah suatu spesies menjadi spesies lain tidak berhasil, terdapat batas tegas antar berbagai spesies makhluk hidup. Ini berarti mustahil bagi peternak untuk mengubah sapi menjadi spesies lain dengan mengawinkan ras-ras yang berbeda di antara mereka, sebagaimana dirumuskan Darwin.

Norman Macbeth, yang menyanggah Darwinisme dalam bukunya Darwin Retried, menyatakan:

Inti permasalahannya adalah apakah makhluk hidup sungguh [mampu] berubah hingga tingkat tak terbatas… Spesies terlihat tetap. Kita semua telah mendengar kekecewaan pemulia yang telah bekerja keras hanya untuk mendapatkan hewan atau tumbuhannya kembali ke bentuk seperti di awal kerja mereka. Meskipun ada usaha keras selama dua atau tiga abad, tetap belum mungkin menghasilkan mawar berwarna biru atau tulip berwarna hitam.

Luther Burbank, salah seorang pemulia paling ahli, menggambarkan kenyataan ini ketika ia berkata, “terdapat batasan untuk kemungkinan pengembangan, dan batasan ini mengikuti hukum tertentu.” Dalam artikelnya berjudul “Some Biological Problems with the Natural Selection Theory (Beberapa Masalah Biologis atas Teori Seleksi Alam),” Jerry Bergman berkomentar dengan mengutip ahli biologi Edward Deevey yang menjelaskan bahwa variasi selalu terjadi dalam batas genetik yang tegas:

Deevey menyimpulkan, “Hal-hal luar biasa telah dihasilkan melalui “kawin silang”… tetapi gandum tetaplah gandum, dan bukan anggur, misalnya. Kita tidak mungkin menumbuhkan sayap pada babi sebagaimana juga membuat telur ayam seperti pipa.” Contoh yang lebih baru adalah pertambahan rata-rata pada tinggi badan laki-laki yang telah terjadi sejak abad yang lalu. Melalui perawatan kesehatan yang lebih baik (dan mungkin juga seleksi seksual, karena beberapa wanita lebih menyukai pria tinggi sebagai pasangannya) laki-laki telah mencapai catatan tinggi badan dewasa tertinggi selama satu abad terakhir, tetapi pertambahan ini dengan cepat menghilang, menunjukkan bahwa kita telah mencapai batasan kita.

Singkatnya, variasi hanya membawa perubahan yang tetap dalam batasan informasi genetik suatu spesies; mereka tidak pernah bisa menambahkan suatu data genetik baru kedalamnya. Untuk alasan ini, tidak ada variasi yang bisa dianggap sebagai contoh evolusi. Tidak peduli berapa sering Anda mengawinkan ras anjing atau kuda yang berbeda, hasil akhinya akan tetap anjing atau kuda, tanpa kemunculan spesies baru. Ilmuwan Denmark, W.L. Johansen, menyimpulkan permasalahan ini sebagai berikut:

Variasi yang ditekankan oleh Darwin dan Wallace tidak bisa secara selektif dipaksakan melampaui titik tertentu, dan variasi semacam ini tidak mengandung rahasia dari ‘keberangkatan [menjadi spesies] mana saja.

Pengakuan tentang “Evolusi mikro”

Seperti yang telah kita lihat, ilmu genetika telah menemukan bahwa variasi, yang pikir Darwin bisa menjelaskan “asal usul spesies”, sebenarnya tidak seperti itu. Untuk alasan ini, ahli biologi evolusi dipaksa untuk memisahkan antara variasi dalam spesies dan pembentukan spesies baru, dan untuk mengajukan dua gagasan berbeda untuk hal yang berbeda ini. Keanekaragaman dalam satu spesies—yaitu, variasi—mereka sebut “evolusi mikro” dan hipotesis untuk perkembangan spesies baru disebut “evolusi makro.”

Dua gagasan ini telah ada dalam buku biologi sejak lama. Tetapi, sebenarnya terdapat pengelabuan di sini, karena contoh variasi yang disebut sebagai “evolusi mikro” oleh ahli biologi evolusi sebenarnya tidak ada hubungannya dengan teori evolusi. Teori evolusi mengutarakan bahwa makhluk hidup bisa berkembang dan memperoleh data genetik baru melalui mekanisme mutasi dan seleksi alam. Namun, seperti yang baru saja kita lihat, variasi tidak pernah menciptkan informasi genetik baru, dan jadinya tidak bisa menyebabkan terjadinya “evolusi”. Memberi nama variasi sebagai “evolusi mikro” sebenarnya hanyalah kecenderungan ideologis dari sebagian penganut biologi evolusi.

Kesan yang diberikan kaum biologi evolusi dengan menggunakan istilah “evolusi mikro” adalah penalaran salah: bahwa sejalan dengan waktu variasi dapat membentuk kelompok makhluk hidup baru. Dan banyak orang yang belum tercerahkan tentang hal tersebut berpikir dangkal bahwa “sejalan dengan perkembangannya, evolusi mikro bisa berubah menjadi evolusi makro.” Kita seringkali melihat contoh pemikiran seperti itu. Beberapa evolusionis “amatir” mengajukan contoh penalaran semacam itu sebagai berikut: karena tinggi rata-rata manusia bertambah sekitar 2 sentimeter hanya dalam satu abad, ini berarti bahwa selama jutaan tahun bentuk evolusi apa saja bisa terjadi. Akan tetapi, seperti yang telah ditunjukkan di atas, semua variasi semacam perubahan tinggi rata-rata terjadi pada batasan genetik tertentu, dan merupakan kecenderungan yang tak berhubungan sama sekali dengan evolusi.

Kenyataannya, saat ini bahkan para pakar evolusionis pun menerima bahwa variasi yang mereka sebut “evolusi mikro” tidak bisa membawa kepada terbentuknya kelompok baru makhluk hidup—dengan kata lain, kepada “evolusi makro”. Pada artikel tahun 1996 dalam Jurnal terkemuka Developmental Biology, ahli biologi evolusi S.F. Gilbert, J.M. Optiz, dan R.A. Raff menjelaskan permasalahan ini sebagai berikut:

 

 

 

 

 

 

 

 

 

 

 

.

[Teori] Sintesa Modern adalah pencapaian yang mengagumkan. Akan tetapi, dimulai sejak tahun 1970-an, banyak ahli biologi mulai mempertanyakan kelengkapan informasi ini dalam menjelaskan evolusi. Genetika mungkin memadai untuk menjelaskan evolusi mikro, tetapi perubahan melalui evolusi mikro pada frekuensi gen tidak terlihat mampu merubah reptilia menjadi mamalia atau untuk merubah ikan menjadi amfibia. Evolusi mikro melihat pada penyesuaian diri yang berhubungan dengan kelangsungan hidup [spesies] yang paling cocok, bukan kemunculan yang paling cocok. Seperti yang dikatakan Goodwin, “asal usul spesies—permasalahan Darwin—tetap tidak terpecahkan.”

Kenyataan bahwa “evolusi mikro” tidak bisa menghantarkan kita ke “evolusi makro”, atau dengan kata lain bahwa variasi tidak memberikan penjelasan bagi asal usul spesies, telah diterima juga oleh ahli biologi evolusi lainnya. Seorang penulis terkenal sekaligus pakar ilmu pengetahuan, Roger Lewin, menggambarkan hasil dari simposium empat hari di Chicago Museum of Natural History pada November 1980, yang dihadiri oleh 150 evolusionis:

Pertanyaan utama dalam konferensi di Chicago itu adalah apakah mekanisme yang menyebabkan evolusi mikro dapat dipakai untuk menjelaskan fenomena evolusi makro.. Jawabannya dapat diberikan dengan sangat jelas, Tidak.

Kita dapat meringkas permasalahan ini sebagai berikut: Variasi, yang dilihat Darwin sebagai “bukti evolusi” selama beberapa ratus tahun, sebenarnya tidak memiliki hubungan sama sekali dengan “asal usul spesies.” Sapi bisa dikawinkan satu sama lain selama jutaan tahun, dan ras sapi yang berbeda mungkin muncul. Tetapi sapi tidak akan pernah berubah menjadi spesies yang berbeda—misalnya jerapah atau gajah. Dengan cara yang sama, perbedaan yang terdapat pada burung pipit yang dilihat Darwin di kepulauan Galapagos adalah contoh lain dari variasi yang bukan merupakan bukti bagi “evolusi.” Penelitian terbaru telah mengungkapkan bahwa burung pipit ini tidak mengalami variasi tanpa batas seperti yang diajukan teori Darwin. Lebih jauh lagi, kebanyakan dari berbagai burung finch yang menurut Darwin mewakili 14 spesies yang berbeda sebenarnya [mampu] kawin satu sama lain, yang berarti bahwa mereka hanyalah variasi dari satu spesies yang sama. Pengamatan ilmiah menunjukkan bahwa paruh burung pipit, yang telah melegenda dalam hampir semua sumber evolusionis, pada kenyataannya adalah satu contoh dari “variasi”; karenanya hal ini bukanlah merupakan bukti bagi teori evolusi. Sebagai contoh, Peter dan Rosemary Grant, yang menghabiskan waktu bertahun-tahun mengamati keanekaragaman burung pipit di kepulauan Galapagos untuk mencari bukti bagi evolusi Darwin, terpaksa menyimpulkan bahwa “populasi ini, dihadapkan pada seleksi alam, berayun maju mundur,” sebuah kenyataan yang secara tidak langsung menunjukkan tidak ada “evolusi” yang membawa pada kemunculan sifat-sifat baru yang pernah terjadi.

Jadi untuk alasan ini, evolusionis masih belum bisa memecahkan permasalahan Darwin tentang “asal usul spesies”.

Variasi, juga diartikan pula pada peristiwa genetis yang menyebabkan individu atau kelompok spesies tertentu memiliki karakteristik berbeda satu sama lain. Sebagai contoh, pada dasarnya semua orang di bumi membawa informasi genetis sama. Namun ada yang bermata sipit, berambut merah, berhidung mancung, atau ber-tubuh pendek, tergantung pada potensi variasi informasi genetisnya.

Evolusionis menyebut variasi dalam suatu spesies sebagai bukti kebenaran teorinya. Namun, variasi bukanlah bukti evolusi, karena variasi hanya hasil aneka kombinasi informasi genetis yang sudah ada, dan tidak menambahkan karakteristik baru pada informasi genetis.

Variasi selalu terjadi dalam batasan informasi genetis yang ada. Dalam ilmu genetika, batas-batas ini disebut “kelompok gen” (gene pool). Variasi menyebabkan semua karakteristik yang ada di dalam kelompok gen suatu spesies bisa muncul dengan beragam cara. Misalnya pada suatu spesies reptil, variasi menyebabkan kemunculan varietas yang relatif berekor panjang atau berkaki pendek, karena baik informasi tentang kaki pendek maupun panjang terdapat dalam kantung gen. Namun, variasi tidak mengubah reptil menjadi burung dengan menambahkan sayap atau bulu-bulu, atau dengan mengubah metabolisme mereka. Perubahan demikian memerlukan penambahan informasi genetis pada makhluk hidup, yang tidak mungkin terjadi dalam variasi.

Darwin tidak mengetahui fakta ini ketika merumuskan teorinya. Ia mengira tidak ada batas dalam variasi. Dalam sebuah artikel yang ditulisnya pada tahun 1844, ia menyatakan: “Banyak ahli yang menganggap bahwa ada batas dalam variasi di alam, namun saya belum menemukan satu bukti pun yang melandasi keyakinan ini”.

Dalam The Origin of Species, ia menyebutkan beragam contoh variasi sebagai bukti terpenting bagi teorinya. Misalnya, menurut Darwin, para peternak yang mengawinkan beragam varietas sapi untuk menghasilkan varietas baru yang menghasilkan susu lebih banyak, akhirnya akan mengubah ternak itu menjadi spesies berbeda. Gagasan Darwin tentang “variasi tanpa batas” jelas terungkap dalam kalimat dari The Origin of Species:

Saya tidak melihat kesulitan bagi suatu ras beruang, melalui seleksi alam, menjadi semakin terbiasa dengan lingkungan akuatis, dengan mulut semakin lebar, sampai akhirnya menjadi makhluk sebesar paus.

Variasi dalam Spesies Bukanlah Evolusi

Dalam buku Origins, Darwin mengacaukan dua konsep: variasi dalam spesies dan kemunculan spesies baru. Berdasarkan pengamatannya atas varietas-varietas anjing, Darwin mengira bahwa suatu saat berbagai varietas ini akan berubah menjadi spesies baru. Sampai sekarang, evolusionis berusaha menunjukkan variasi dalam spesies sebagai bentuk evolusi. Padahal fakta ilmiah membuktikan bahwa variasi dalam sebuah spesies bukanlah evolusi. Misalnya, sebanyak apa pun varietas dalam spesies anjing di alam, atau yang dibiakkan oleh manusia, mereka tetap anjing. Tidak akan ada peralihan dari satu spesies ke spesies lainnya.

Darwin mengemukakan contoh yang berlebihan ini karena pemahaman yang primitif akan ilmu pengetahuan di zamannya. Pada abad ke-20, ilmu pengetahuan telah menetapkan prinsip “stabilitas genetis” (homeostasis genetis) berdasarkan hasil-hasil eksperimen yang dilakukan pada makhluk-makhluk hidup. Prinsip ini menyatakan bahwa semua usaha pengawinan untuk menghasilkan variasi-variasi baru tidak meyakinkan, dan ada batasan-batasan ketat di antara spesies-spesies makhluk hidup yang berbeda. Artinya, sangat mustahil para peternak dapat mengubah sapi menjadi spesies berbeda dengan cara mengawinkan varietas-varietasnya, seperti dinyatakan Darwin.

 

Norman Macbeth membantah Darwinisme dalam bukunya Darwin Retried:

Inti masalahnya adalah, kalaupun benar makhluk hidup dapat bervariasi tan-pa batas… Spesies-spesies selalu stabil. Kita semua pernah mendengar bagaimana peternak dan hortikulturis yang sudah berusaha sedemikian keras menjadi kecewa mendapati hewan atau tumbuhan yang mereka kembangkan kembali ke varietas asal. Sekalipun usaha keras dilakukan selama dua atau tiga abad, tidak mungkin dihasilkan mawar biru atau tulip hitam.

Luther Burbank yang dianggap sebagai hortikulturis paling berhasil, mengungkap fakta ini saat mengatakan “ada batas-batas dalam pengembangan yang mungkin terjadi, dan batas-batas ini mengikuti suatu aturan”.Tentang hal ini, ilmuwan Denmark, W.L. Johannsen berkomentar:

Variasi-variasi yang menjadi titik tekan Darwin dan Wallace tidak dapat dipaksakan melampaui tahap tertentu. Variabilitas seperti ini tidak me-miliki rahasia ‘perubahan tanpa batas’.

 

APAKAH IKAN PAUS BEREVOLUSI DARI BERUANG?

Dalam buku The Origin of Species, Darwin menyatakan bahwa paus berevolusi dari beruang yang berusaha berenang! Darwin telah keliru menganggap bahwa kemungkinan variasi dalam spesies tidak terbatas. Ilmu pengetahuan abad ke-20 telah menunjukkan bahwa skenario evolusi ini hanya khayalan.

 

2. Variasi Melalui Domestikasi

a. Sifat-sifat Varietas Domestikasi

Penjinakan hewan-hewan liar menjadi hewan peliharaan disebut domestikasi. Domestikasi menyebabkan terjadinya penyimpangan dari keadaan aslinya sehingga mengarah pada terbentuknya spesies baru. Secara alami, hewanhewan peliharaan akan memisahkan diri dari hewan-hewan liar dan mempersempit peluang terjadinya interhibridisasi.

Domestikasi Hewan ternak yang dijinakkan dari hewan liar dan tanaman budi daya dari tumbuhan liar adalah contoh domestikasi. Domestikasi memindahkan makhluk-makhluk tersebut dari habitat aslinya ke dalam lingkungan yang diciptakan manusia. Hal ini mengakibatkan muncul jenis hewan dan tumbuhan yang memiliki sifat menyimpang dari sifat aslinya.

Domestikasi merupakan bukti evolusi yang muncul karena adanya campur tangan manusia. Kegiatan manusia dalam pembudidayaan tanaman ataupun hewan tertentu telah melahirkan spesies-spesies baru yang memiliki sifat yang berbeda dengan nenek moyangnya. Perubahan tersebut merupakan bagian dari evolusi makhluk hidup yang diciptakan oleh manusia untuk keuntungan manusia. Manusia telah membudidayakan berbagai macam tanaman mulai dari tanaman untuk konsumsi, tanaman hias dan hewan ternak dengan tujuan untuk memperoleh kultivar baru yang lebih baik dari tanaman induknya. Sebagai contoh, pernahkah kalian makan semangka tanpa biji? Nah, semangka tersebut merupakan salah satu kultivar hasil domestikasi. Dalam evolusi, makhluk hidup mengalami perubahan secara perlahan lahan dari waktu ke waktu sampai dilahirkannya spesies baru yang berbeda dengan nenek moyangnya.

b. Seleksi Tanpa Sadar

Pada saat para peternak andalan mencoba membuat keturunan yang lebih unggul dari jenis apapun yang ada di Negara, lewat suatu seleksi metode dengan obyek berbeda. Namun untuk tujuan kita, suatu bentuk seleksi yang bisa sadar , yang dihasilkan dari semua orang yang berusah amemiliki dan membiakkan binatang individual yang terbaik adalah lebih penting. Jadi orang yang bermaksud memelihara anjing pemburu sudah barang tentu mencoba mendapatkan anjing yang sebaik mungkin , dan setelah itu baru mk dan mereka selam mengembangkannya diri anjing yang sebaik mungkin, dan setelah itu mengembangkan nya dari anjingnya sendiri yang paling baik. Namun ia tidak ingin dan tidak mengharapkan keturunan yang berubah secara permanen. Bagaimanapun , kota bisa berkesimpulan bahwa selam berabad-abad, proses ini akan mengembangkan dan memodifikasi perkembangbiakan dengan cara yang sama seperti yang dilakukan Bakewell. Collins dan lain-lain, secara lebih metodis  lewat proses yang sama , dan mereka selama hidupnya banyak memodifikasi bentuk dan sifat bintang ternak mereka. Perubahan-perubahan jenis yang pelan-pelan dan tak terasakan ini tidak peernah dapat diketahui kecuali jika ukuran aktualnya atau gambar keturunan yang sesakma yang dipersoalkan sesudah dibuat sejak lama berelang, dengan begitu bisaa dipakai untuk membandingkan . Bagaimana pun dalam beberapa kasus. Didaerah –daerah yang kurang berbudaya, individu-individu yang tidak berubah atau yang sedikit berubah, tetap  ada; disitu keturunan tidak begitu mengalami perkembangan. Ada alas an untuk percaya bahwa anjing cukup besar  sejak zaman monarki. Beberapa ahli yang berkompeten yakni bahwa anjing setter secara langsung berasal dari anjing spanil, dan mungkin secara berubah dalam abad terakhir ini, dan sebagimana yang dipercaya, dalam kasus ini , perubahan tersebut kena pengruh dari penyilangan dengan foxhound. Namun apa yang terjadi kepedulian kita ialah bahwa  perubahan kita ialah bahwa perubahan itu telah terkena pengaruh secara tidak sadar dan secara bertahap , tapi begitu efektifnya sehingga meskipun anjing pemburu Spanyol dahunya dari Spanyol , tetapi Borrow, sebagaimana yang ia katakana kepada saya, tidak melihat anjing tersebut seperti anjing tersebut seperti anjing berburu kita di Spanyol.

Dengan proses seleksi yang sama , dan dengan pelatihan secara sesakma, kuda-kuda pacu inggris telah unggul dalam hal kecepatan dan ukuran atas nenek moyangnya yang Arab, Lord Spencer dan yang lain-lain telah menunjukkan bagaimana binatang ternak di Inggris telah bertambah berat dan menjadi matang lebih awal jika dibandingkan dengan jenis ternak  yang dulu di pelihara di Negara itu . dengan membandingkan hal-hal yang telah diberikan dalam berbagai tulisan kuno mengenai sifat dulu dan sifat sekarang dari burung merpati pos dan merpati tumbler di inggris , di India dan di Persia, kita bisa melacak tahap-tahap yang mereka lalui tanpa mereka rasakan dan tahap terjadinya perbedaan besar dari merpati batu.

Youatt memberikan suatu ilustrasi sangat bagus mengenai pengaruh-pengaruh jalanannya yang bisa dianggap tak sadar yang selam ini tidak pernah dapat diduga oleh para peternak, atau bahkan diinginkan untuk bisa membuahkan hasil yang tejadi , yakni hasil dari dua keturunan yang berbeda, seperti yang di katakana Youatt, dua jenis domba Leicester yang dipelihara oleh Buckey dan Burgess telah diturunkan secara murni selama lima puluh tahun yang lalu sampai sekarang , dari jenis asli jenis binatang milik Bakewell. Tidak ada kecurigaan dalam fikiran orang mengenai hal ini bahwa salat atu dari kedua pemilik ini tidak menyimpang sesuatu dari darah asli jenis binatang milik Bakewell; perbedaan antara domba-domba yang dipelihara kedua orang tersebut begitu besarnya sehingga domba-domba itu tampak mempunyai variasi yang sangat berbeda.

Kalupun ada orang-orang liar yang masih sangat baebar dan tidak pernah memikirkan sifat warisan pada keturunan binatang-binatang ternak memikirkan sifat warisan pada keturunan binatang ternak mereka, namun jika ada masa kelaparan atau jika ada peristiwa malang lainnya, binatang yang sangat berguna bagi orang-orang itu untuk suatu tujuan khusus , akan tetapi dijaga secara seksama , dan dengan dem pada varietasikian binatang-binatang pilihan tersebut umumnya akan memberikan ketentuan lebih banyak dari pada binatang yang kurang bermutu, sehingga dalam kasus ini aka nada semacam seleksi tanpa sadar wanita tua dan melahapnya pada saat-saat kekurangan maupun karena sudah kurang bernilai dari pada anjing mereka. Disini kita melihat adanya nilai yang dicantumkan pada binatang oleh orang-orang barbar dari Tierra del Fuego.

Pada tumbuhan , proses kemajuan yang sama dan bertahap melalui pelestarian individu-individu terbaik yang okasional, entah mempunyai perbedaan cukup untuk digolongkan sebagai varietas lain pada penampilan pertama , atau belum dan apakah dua spesie rasa tau lebih telah bercampur lewat persalingan atau belum dapat dilihat secara jelas dalam bertambahnya ukuran dan keindahan yang kita liat pada varietas-varietas bunga heartease, pelargonium . dahlia dan tanaman-tanaman lainnya. Jika dibandingkan dengan varietas-varietas lain, atau dengan jenis tentunya. Tidak seorang pun mengharapkan meruperoleh bunga  heartease dan dahlia kelaswahid dari biji tanaman liar. Tidak seorangpun berhadap mengembangkan buah pir kelas wahid dari biji buah pir liar, meskipun mungkin ia berhasil mengembangkan nya dari biji jelek yang tumbuh liar, asalkan biji itu dari biji kebun . buah pir , meskipun  sudah dibudidayakn pada zaman dahulu . tanpak tetap menjadi buah yang berkualitas rendah , sebagaimana diuraikan Pliny. Saya melihat kejutaan besar yang terungkap pada keterampilan tukang kebun dalam kerja kebunya . yang telah membuahkan hasil yang gemilang dari bahan yang tidak baik , seni ini sebetulnya sederhana dan selama ini hasil finalnya telah diikuti hamper secara tidak sadar , ini terjadi karena selalu membudidayakan varietas yang sedikit lebih baik muncul dengan menyeleksinya dan begitu seterusnya. Namun tukang-tukang kebun dari zaman klasik , yang membudidayakan buah-buah pir yang paling baik yang bisa mereka peroleh tidak pernah berfikir alangkah lezat. Berkat varietas terbaik yang bisa kita temukan dimana-mana, yang dalam tingkatan kecil pernah mereka pilih dan pelihara secara alami.

Dalam pandangan yang diberikan mengenai peran penting seleksi oleh manusia menjadi lebih jelas bagaimana ras-ras piaraan menunjukan adaptasi struktur serta kebiasaan menurut  keinginan orang atau kesenangan orang. Saya kira, kita bisa memahami lebih lanjut tentang sifat yang sering abnormal dan ras-ras domestik , demiakian juga mengenai perbedaan-perbedaan mereka yang begitu besar dalam hal sifat-sifatnya luarnya dan perbedaan yang relative kecil dalam hal bagian –bagian internalnya atau organ-organnya. Orang hamper tidak dapat menyeleksi menyimpan stuktur , atau kalau bisa dengan sulit sekali, kecuali yang keliatan . memang jarang ada orang yang peduli akan bagian internal . orang tidak pernah bertindak lewat seleksi keculi menyangkut variasi-variasi yang telah ada padanya dalam tingkatan  kecil yang secar alami. Dan tidak ada orang yang pernah membuat ekor yang berkembang dalam tingkatanktu yang tidak biasa. Atau membuat seekor puter sampai ia melihat merpati yang mempunyai tembolok berukuran tidak biasa; semakin tidak normal dan semakin tidak pada penampilan pertamanya, semakin menarik perhatian. Tetapi penggunaan ungkapan seperti mencoba membuat burung fantail (merpati ekor kipas). Dalam banyak kasus adalah tidak benar sama sekali ; hal ini tidak saya ragukan. Orang yang menyeleksi pertama kali seekor merpati yang berekor sedikit lebih besar, tidak pernah bermimpi bagaimana jadinya keturunan besok melalui seleksi yang berlangsung terus sampai lama, dan yang sebagian tampa sadar , dan yang sebagian lagi bersifat motois. Mungkin nenek moyang semua merpatifantail Jawa sekarang empat belas helai bulu ekor . mungkin merpati puter pertama melambungkan temboloknya tidak lebih besar dari pada merpati tubit yang sekarang melambungkan bagian atas Aesophagusnya, ini suatu kebiasaan yang diabadikan oleh para pencin merpati, karena bukan merupakan salah satu yang dimaksud dari keturunan.

Atau orang hendaknya jangan berfikir tentang perlunya penyimbangan besar stuktur yang bisa ditangkap mata Penggemar. Orang yang busa merasakan adanya perbedaan kecil sekalipun, dan menjadi sifat manusia untuk menghargai sesuatu yang baru, yang jadi miliknya sendiri, meskipun sedikit. Atau nilai yang dulunya ditetapkan atas adanya perbedaan kecil pada individu-individu berspesies sama, hendaknya jangan ditentukan dari nilaij yang ditetapkan sekarang atas perbedaan tersebut, setelah terjadi beberapa keturunan. Sudah diketahui bahwa pada merpati terdapat banyak variasi kecil yang muncul serta kebetulan , namun hal ini tolak sebagai suatu kesalahan dan penyimpanan dari standar kesempurnaan dari setiap keturunan. Angsa biasa tidak melahirkan varietas-veriatas yang mencolok , oleh  karena angsa Toulouse dan keturunan biasa yang sedikit lain warna serta kegesitan tampak  sebagai yang berbeda didalam pemeran unggas.

Pandangan-pandangan ini tampaknya ingin menjelaskan apa yang kadang-kadang menjadi perhatian, yakni bahwa kita hamper tidak tahu apa-apa mengenai asal mula sejarah dari binatang peliharaan kita. Namun nyatanya, suatu keturunan, seperti halnya suatu dialek bahasa, hampir tidak dapat dikatakan mempunyai suatu asal mula yang berbeda. Orang melindungi serta mengembang biakakan suatu individu yang sedikit lain strukturnya, atau orang lebih perduli dari biasanya didalam mencocokkan binatangnya yang terbaik; jadi disini orang meningkatkan binatangnya, dan binatang yang sudah meningkat ini sedit demi sedikit menyebar di kanan kirinya. Tetapi binatang-binatang ini hampir tidak memiliki nama khusus, dan binatang ini, karena hanya sedikit dihargai, sejarahnya pun diabaikan. Jika terus dikembangkan melalui proses yang sama, pelan-pelan, dan bertahap, binatang tadi akan menyebar lebih luas, dan akan dikenal sebagai sesuatu yang lain dan berharga, dan mungkin memperoleh nama kedaerahan. Di Negara-negara yang setengah beradap dan mempunyai sedikit komunikasi bebas, penyebaran sub-keturunan baru ini merupakan suatu proses yang lamban. Sekali nilainya dikenal orang, prinsip seleksi tidak sadar, sebagaimana yang telah saya katakana, akan selalu cenderung menambah secara pelan-pelan cirri-ciri khusus keturunan, entah keturunan apapun, – mungkin dalam suatu periode, pertambahan lebih banyak dari pada periode lainnya, seperti halnya timbul tenggelamnya keturunan untuk mode – mungkin di satu daerah, penambahannya lebih banyak dari pada di daerah lain, sesuai tingkat peradapan penduduk. Tetapi dari catatan yang disimpan mengenai perubahan yang terjadi secara pelan, bervariasi serta tanpa sadar, kemungkinan hal itu sangat kecil.

c. Prinsip-prinsip Seleksi pada Zaman Dulu dan Dampaknya

Marilah kita renungkan sebentar langkah-langka yang dengannya ras-ras piaraan diproduksi, entah dari satu spesies atau dari beberapa spesies yang sekerabat . dampak atau pengaruhnya bias dinisbatatkan pada tindakan kondisi eksternal kehidupan secara langsung dan pasti dan bias pada kebiasaan. Orang menjelaskan perbedaan-perbedaan antara kuda tarik dan kuda balap, antar anjing greyhound dan bloodhound , antara merpati pos dan merpati tumber lewat perantara semacam itu adalah seorang pemberani . salah satu dari cirri mencolok pada ras-ras piaraan kita adalah bahwa kita melihata adanya adaptasi pada mereka, bukan semata untuk  manusia. Beberapa variasi yang digunakan manusia. Beberapa variasi yang berguna bagi manusia kemungkinan timbul secara tiba-tiba atau lewat suatu langkah. Banyak para ahli botani misalnya, percaya bahwa manusia satu genus dan teasel dengan duri-durinya yang tidak dapat ditandatangani dengan pertemuan mekanis apa pun, hanyalah sebuah variasi dari Dipsacus liar, dan banyaknya perubahan ini bias saja muncul  secara tiba-tiba dalam benih. Begitu juga bias saja terjadi pada anjing turnspit, juga dalam kasus domba ancon. Tetapi jika kita membandingkan kuda tarik dengan kuda balap, unta dan dromedary, berbagai jenis domba yang bias hidup ditanah garapan atau di padang rumput , jika kita membandingkan wol dari satu jenis domba dalam satu tujuan, dan wol dari lain jenis untuk tujuan lain ; jika kita membandingkanbanyak jenis anjing, yang masing-masing mempunyai kegunaan bagi manusia dengan cara yang berbeda; jika kita membandingkan ayam sambung yang begitu tegardalam bertarung dengan jenis ayam lain yang kurang suka bertarung, dengan ayam  petelur yang tidak perna mempunyai keinginan untuk bertengger dengan ayam batam yang sangat kecil dan molek ; jika kita membandingkan kelompok ras-ra tanaman perkebunan , tanaman dapur , tanaman kebun buah dan tangaman kebun bungan , yang sangat berguna bagi manusia pada musim-musim yang berbeda dan untuk tujuann yang berbeda pula, maka saya kira kita harus melihat lebih jauh daripada sekedar melihat veriabilitas.kita tidak dapat memperkiraan bahwa semua jenis yang dihasilkan secara mendadak , dengan sempurna dan berguna seperti yang kita liat sekarang ini. Memang dalam banyak kasus , kita tahu bahwa hal ini bukan merupakan sejerah mereka, kuncinya ialah daya kekuatan manusia dalam seleksi kumulatif; alam memberikan variasi-variasi secara selisi berganti ; manusia tinggal menambahnya dengan aturan-aturan tertentu yang sekitarnya berguna baginya. Dalam hal ini , boleh dikatakan manusia membuat keturunan yang sekitarnya berguna bagi dirinya.

Kekuatan besar prinsip seleksi ini tidak bersifat hipotesis. Yang pasti , beberapa peternakan, bahkan dalam satu kurun waktu kehidupan , telah memodifikasi jenis-jenis domba dan ternak mereka secara luas . agar dapat menyadari sunggu-sunggu apa yang telah mereka lakukan, sangat perlu membaca beberapa tulisan mengenai hal tersebut serta perlu meneliti binatang. Para peternak biasanya berbicara tentang kelompok binatang sebagai sesuatu yang bersifatplastis, yang bias mereka jadikan model sesuka mereka, jika ada tempat dalam buku ini , saya dapat mengutip banyak bagian buku dari para ahli yang berkopenten mengenai dampak ini. Youtt yang mungkin lebih dikenal daripada individu yang lain karena karya-karyanya tentang pertanian dan yang merupakan penilaian yang baik tentang binatang , bicara mengenai seleksi sebagai “ sesuatu yang memungkinkan seorang angrikulturis tidak hanya memodifikasi sifat kawanan hewan, tetapi juga sekaligus mengubahnya. Ini merupakan tongkat sihir yang bisa dipakai untuk memerintahkan agar hidup apapun bentuk dan wujudnya , menurut seleranya “ Lord Somerville, ketika berbicara tentang apa yang dilakukan para peternak terhadap domba-dombanya mangatakan, tampak seolah-olah mereka mengapur suatu bentuk yang pada hakekatnya sudah sempurna, pada dinding, dan kemudian memberinya ekssistensi. “ pada bahan wol yang halus , pentingnya prinsip seleksi tentang domba merino telah begitu dikenal sehingga orang menghitungnya suatu kejujuran ; domba ditempatkan pada kandang dan diselidiki oleh seorang “connoisseur” sebagai gambaran: dan ini dilakukan tiga kali dalam interval bulan: setiap kali, domba tadi ditandai dan digolongkan sehingga yang terbaik bisa diseleksi untuk perkembangbiakan.

Apa yang telah mempengaruhi secara aktual pada para peternak Inggris bisa dibuktikan Dengan tingginya harga yang diberikan untuk binatang yang mempunyai silsilah baik. Dan binatang-binatang ini di ekspor ke hampir semua bagian bumi. Kemajuan ini sama sekali bukan karena mempersilangkan jenis –jenis yang berbeda-beda semua peternak yang baik sangat menentang praktik ini, kecuali di kalangan sub jenis yang sangat dekat kekerabatannya, dan inipun hanya kadang-kadang. Jika dilakukan penyilangan, seleksi yang paling dekat lebih diperlukan daripada dalam kasus-kasus biasa. Jika seleksi terjadi hanya dengan memisahkan varietas yang sangat berbeda dan mengembangbiakkan dari situ, asa dasarnya harus jelas, karena hampir tidak mudah dilihat. Hal ini menjadi penting karena pengaruh besar yang dihasilkan oleh akumulasi satu arah dari perbedaan-perbedaan selama generasi ke genarasi sama sekali kurang dikenal dimata orang yang kurang pendidikan. Dari seribu orang, tidak seorangpun yang memiliki kejelian mata dan kejelian penilaian yang cukup untuk menjadi seorang peternak yang handal. Jika ia dikaruniai sifat-sifat tersebut dan jika ia mempelajari subyek tersebut selama bertahun-tahun serta mengabdikan hidupnya untuk hal itu, ia akan sukses dan mungkin bisa membuat kemajuan- kemajuan besar. Jika ia hanya menginginkan salah satu dari sifat-sifat ini, ia justru pasti gagal. Hanya beberapa orang saja yang mau percaya akan kapasitas alami yang harus dimiliki dan perlunya praktik selama bertahun-tahun untuk menjadi seorang pecinta merpati yang terampil.

Prinsip yang sama ini diikuti oleh holtikulturis, tetapi disini variasi-variasinya sering lebih kasar. Tidak seorangpun berpikir bahwa produksi pilihan utama kita telah dihasilkan oleh satu variasi tunggal dari keturunan asli. Kita mempunyai bukti-bukti bahwa hal ini tidaklah demikian dalam kasus-kasus dimana ada catatan –catatan tepat yang disimpan, jadi untuk memberikan suatu contoh yang sangat sederhana, kita bisa mencatat bahwa buah frambus tetap bertambah. Kita melihat kemajuan yang menakjubkan pada sekian banyak bunga milik penanam bunga, ketika bunga-bunga yang ada sekarang dibandingkan dengan gambar-gambar yang dibuat dua puluh atau tiga puluh tahun yang lalu. Begitu jenis tanaman sudah ditanam dengan baik, maka si penanam tinggal memeriksanya di persemaian dan mencabuti yang tidak baik, yang oleh mereka disebut tanaman yang menyimpang dari standar yang semestinya. Adapun yang menyangkut binatang, jenis seleksinya diikuti seperti itu. Oleh karenanya hampir tidak ada yang sembrono hingga mau mengembangbiakkan binatangnya yang paling jelek.

Mengenai tumbuhan, terdapat sarana lain untuk mengamati pengaruh seleksi yang terakumulasi yakni dengan membandingkan diversitas bunga-bunga dalam varietas-varietas berbeda dari spesies yang sama yang ada ditaman bunga, yakni diversitas daun, kelopak, atau diversitas akar umbi, atau bagian apa saja yang bernilai di kebun, dibandingkan dengan bunga-bunga berspesies sama, diversitas bunga yang berspesies sama dikebun buah-buahan, dibandingkan dengan daun dan bunga dari serangkaian varietas yang sama. Lihatlah, bagaimana perbedaan daun-daun kubis, dan bagaimana sangat miripnya bunga-bunganya, betapa tidak miripnya bunga-bunga “heartsease”, dan betapa miripnya daun-daunnya, bagaimana buah dari jenis frambus yang berlainan bisa bisa berbeda dalam hal ukuran, warna, bentuk, dan bulunya, namun bunga-bunganya hanya menunjukkan perbeal dan yang sedikit. Disini verietas yang sangat berbeda dalam satu hal tidak harus berbeda sama sekali dalam hal-hal lain. Setelah diadakan pengamatan seksama, saya mengatakan bahwa hampir tidak ada kasus seperti ini , dan mungkin bahkan tidak perna ada. Hukuman variasi yang berkolerelansi, yang kepentingannya tidak perna dilupakan , akan memastikan adanya beberapa perpedaan; namun, sebagai suatu aturan umum, tidak bisa  diragukan lagi bahwa seleksi variasi kecil-kecil yang terus menerus, entah pada daun , bunga ataupun pada buah , akan menghasilkan ras yang berbeda satu dengan yang lainya , lebih-lebih dalam hal sifat-sifatnya.

Bisa saja ditolak bahwa prinsip seleksi telah tereduksi menjadi praktik-praktik metedologis selama hampi tidak lebih dari seperempat abadi; yang jelas hal ini baru diikuti lebih sering pada tahun-tahun terakhir ini, dan banyak tulisa tentang subyek ini diterbitkan ;dalam hal tingkatan, hasilnya ternyata cepat dan penting. Namun sangat tidak benar kalau hal ini merupakan suatu penemuan modern. Namun sangat tidak benar kalau hal ini merupakan suatu penemuan modern. Disini saya bisa memberikan beberapa referensi tentang karya-karya sangat antik, dimana telah diakui pentingnya prinsip ini. Pada zaman berbar dan primitive pada sejarah inggris, binatang-binatang pilihan seringkali diimpor, maka perlu diberikan undang-undang untuk mencegah ekspor binatang tersebut. Waktu itu ada perintah untuk memusnakan kuda berukuran tertentu,dan ini bisa dibandingkan dengan pemusnahan tumbuh-tumbuhan yang dianggap jelek oleh para penanam. Saya berpendapat , prinsip seleksi diberikan secara berbeda dalam ensklopedia Cina Kuno. Aturan-aturan yang ekspli ditetapkan   oleh beberapa penulis klasik Romawi. Dari bagian-bagian dalam kitab kejadian, jelas bahwa warna binatang-binatang piaraan adalh warna yang ada pada zaman dulu. Orang- orang biadap sekarang ini sering menyilangkan anjing-anjing mereka dengan binatang-binatang mereka jenis anjing liar untuk memajukan keturunan , dan orang-orang biadap di Afrika Selatan menyeragamkan warna binatang-binatang penarik, seperti yang dilakukan oleh sebagian orang Eskimo terhadap kelompok atau tim anjing mereka. Livingstone menyatakan bahwa keturunan binatang piaraan yang bagus sangat dihargai oleh orang-orang Negro dipedalaman Afrik,yang belum berhubungan dengan orang Eropa . beberapa dari fakta –fakta tersebut tidak menunjukan bahwa pengembangan binatang-binatang piaraan dilakukan oleh orang-orang yang peradabannya bintang-banatang piaraan dilakukan oleh orang-orang yang peradabannya rendah , memang akan merupakan suatu fakta yang aneh jika hal itu tidak mendapatkan perhatian, karena disini sudah jelas ada warisan kualitas baik dan kualitas selek.

 

3. Variasi Alamiah

a. Perbedaan Individu

Terdapat sejumlah evolusionis yang berusaha mengajukan keragaman ras sebagai bukti kebenaran evolusi. Pada kenyataannya, pernyataan ini sebenarnya lebih sering dikeluarkan oleh para evolusionis amatir dengan pemahaman yang kurang memadai atas teori yang mereka dukung tersebut.

Tesis yang diajukan oleh pendukung pernyataan itu didasarkan atas pertanyaan, “Jika, seperti dikatakan sumber-sumber agama samawi, kehidupan memang diawali oleh seorang lelaki dan seorang perempuan, mengapa beragam ras muncul?” Dengan kata lain, maksud pertanyaan itu adalah, “Karena tinggi badan, warna kulit, serta ciri fisik lain pada Adam dan Hawa hanyalah ciri fisik dua orang saja, mengapa berbagai ras dengan ciri fisik yang sama sekali berlainan dapat muncul?”

Sebenarnya, yang menjadi dasar semua pertanyaan atau sangkalan itu adalah kurangnya pengetahuan tentang hukum-hukum genetika, atau ketidakperdulian mereka atas ilmu tersebut. Agar kita dapat memahami penyebab keragaman ras di dunia kini, kita harus lebih dahulu memahami “variasi”, suatu pokok bahasan yang terkait erat dengan pertanyaan ini.

Variasi adalah sebuah istilah dalam ilmu genetika, yaitu peristiwa genetis yang menyebabkan timbulnya perbedaan ciri-ciri satu atau sekelompok individu dalam suatu jenis atau spesies tertentu. Sumber variasi adalah informasi genetis yang dimiliki individu dalam spesies itu. Sebagai akibat perkawinan antar individu, informasi genetis itu bergabung dalam berbagai kombinasi pada generasi berikutnya. Terjadi pertukaran materi genetis antara kromosom ayah dan kromosom ibu. Jadi, gen saling bercampur-baur. Hasilnya, terdapat ciri-ciri individual yang sangat beragam.

Ciri-ciri fisik yang berbeda antar-ras manusia yang berbeda ditimbulkan oleh variasi yang terdapat dalam ras manusia. Semua orang di muka bumi memiliki informasi genetis yang pada dasarnya sama, namun ada yang bermata sipit, ada yang berambut merah, ada yang berhidung mancung, ada yang bertubuh pendek, tergantung sejauh mana potensi variasi informasi genetis ini.

Agar kita memahami potensi variasi ini, cobalah bayangkan sebuah masyarakat di mana kelompok individu berambut coklat dan bermata coklat lebih dominan, dibandingkan individu-individu berambut pirang dan bermata biru. Lama-kelamaan, sebagai hasil dari perbauran dan pernikahan silang, dihasilkan keturunan berambut coklat dan bermata biru. Dengan perkataan lain, ciri fisik kedua kelompok itu akan bergabung dalam keturunan berikutnya dan menghasilkan penampilan baru. Bila kita bayangkan ciri fisik lainnya pun berpadu seperti itu, sangatlah jelas bahwa akan muncul variasi yang sangat beragam.

Variasi-variasi manusia yang sangat beragam

 

Hal penting yang harus dipahami di sini adalah: Setiap ciri fisik ditentukan oleh dua buah gen. Salah satu gen mungkin lebih dominan, atau keduanya sama kuat. Contohnya, ada sepasang gen yang menentukan warna mata seseorang – satu gen dari ibu dan satunya lagi dari ayah. Warna mata orang tersebut ditentukan oleh gen yang dominan. Pada umumnya, warna gelap lebih dominan daripada warna terang. Jadi, bila seseorang memiliki gen mata coklat dan gen mata biru, maka warna matanya akan coklat, karena yang dominan adalah gen warna mata coklat. Namun gen yang bersifat resesif tetap diturunkan, dan mungkin muncul pada masa (generasi – terj.) selanjutnya. Dengan kata lain, pasangan ayah dan ibu yang keduanya bermata coklat dapat memperoleh anak bermata hijau. Hal ini disebabkan karena gen warna tersebut bersifat resesif dan terdapat pada kedua orangtua.

Kaidah ini berlaku juga untuk ciri-ciri fisik lain beserta gen-gen pengaturnya. Ratusan, bahkan ribuan ciri fisik, seperti telinga, hidung, bentuk mulut, tinggi badan, struktur tulang, dan struktur, bentuk serta sifat dari sebuah organ, kesemuanya diatur dengan cara yang serupa. Berkat hal ini, informasi tak terhingga yang terdapat di dalam struktur genetis dapat diturunkan ke generasi berikutnya, tanpa harus tampak dari luar. Adam, manusia pertama, dan Hawa, mampu menurunkan informasi yang kaya dalam struktur genetis mereka kepada keturunan mereka, walau yang tampak dari luar hanya sebagian saja. Isolasi geografis yang terjadi sepanjang sejarah manusia telah mengakibatkan ciri-ciri fisik tertentu terkumpul dalam suatu kelompok. Lama-kelamaan, masing-masing kelompok memiliki ciri tubuh yang khas, misalnya struktur tulang, warna kulit, tinggi badan, dan volume tengkorak kepala. Akhirnya, terbentuklah beragam ras.

Akan tetapi, tentunya waktu yang panjang tidak akan merubah satu hal. Tak menjadi soal, apa pun tinggi, warna kulit dan volume otak, seluruh ras adalah bagian dari spesies manusia.

b. Spesies yang Meragukan

Bentuk-bentuk yang memiliki sifat spesies dalam suatu tingkatan yang nyata, namun sangat mirip dengan bentuk lain atau yang sangat berkaitan dengan bentuk-bentuk lain melalui gradasi pengantar, yang oleh para naturalis tidak digolongkan sebagai spesies lain, ternyata dalam beberapa hal sangat penting bagi kita. Kita memiliki alasan untuk percaya bahwa banyak bentuk-bentuk meragukan dan yang tergabung erat memiliki sifat-seifat yang tersimpan secara permanen sampai lama.

Oleh Karena itu, dalam penentuan apakah suatu bentuk harus digolongkan sebagai spesies atau varietas , terdapat pada naturalis yang memiliki penilaian sehat serta pengalaman luas tampaknya menjadi satu-satunya bimbingan yang harus diikuti . bagaimanapun , dalam banyak kasus, kita harus memutuskannya lewat mayoritas para naturalis, karena varietas yang sudah tampak dikenal, dan yang tidak digolongkan sebagai spesies, dapat disebutkan paling tidak boleh beberapa penilaian yang berkompeten

Varietas-varietas dengan sifat yang meragukan yang menyimpang dari kebiasaan tidak dapat dipertentangkan , cobalah membandingkan  beberapa flora dari inggris, prancis dan amerika yang diambil oleh para ahli botani. Yang berbeda-beda dan liatlah betapa banyaknya bentuk-bentuk yang telah digolongkan oleh ahli botani yang satu sebagiai spesies yang baik, dan oleh para ahli botani lainnya sebagai varietas saja.H.C .Watson yang harus diberi ucapan terima kasih atas bantuan dalam berbagai hal , telah member tanda 182 tanaman untuk saya , yang umumnya dianggap sebagai varietas , tetapi oleh para ahli botani dimasukkan sebagi spesies. Waston juga mengabaikan sama sekali bebera genus yang sangat polimorfis. Pada genera, termasuk bentuk-bentuk yang sangat polimorfis, Babington memberikan 251 spesies sedangkan Benthen hanya memberikan 112, jadi ada selisih 139 bentuk-bentuk yang meragukan. Dikalangan bintang-bintang yang menyatu untuk keperluan kelahiran dan yang merupakan bentuk-bentuk meragukan yang banyak gerak serta yang oleh ahli zoology lainnya sebagai varietas, jarang ditemukan dinegara yang sama, tetapi umumnya didapatkan didaerah-daerah yang terpisah. Beberapa banyak burung serangga di Amerika Utara dan Eropa yang saling berbeda sedikit telah digongkan oleh seorang naturalis terkemuka sebagai spesies yang tidak diragukan dan oleh yang lain sebagai varietas, atau seperti sering mereka sebut sebagai ras geografis. Didalam beberapa naskah berbobot tentang berbagai binatang , lebih-lebih tentang Lepidoptera, yang mendiami pulau-pulau dikepulauan Malaya, Wallace menunjukkan bahwa binatang-binatang tadi bisa diklasifikasikan dalam empat klasifikasi pokok, yakni sebagai bentuk yang variable, sebagai bentuk local, sebagai ras geografis, dan sebagian spesies representative murni. Yang pertama atau bentuk yang variable berfariasi banyak di dalam batas-batas pulau yang sama . bentuk local culup konstan dan berbeda disetiap pulau dibandingkan bersama , perbedaannya tampak sangat sedikitdan bertahap, sehingga tidak mungkin untuk mendefinisikan atau menjelaskannya, meskipun pada saat yang sama berbentuk-bentuk ekstremnya cukup berlainan. Ras geografis atau sub-spesis adalah bentuk local yang sudah pasti dan terisolasi , tetapi karena yang satu dengan yang lain tidak berbeda oleh sifat-sifatnya yang penting dan mencolok , maka tidak ada tes kecuali pendapat pribadi yang memungkan untuk menentukan mana yang sianggap sebagai spesies dan mana yang dianggap sebagai varietas. Akhirnya, spesies respressentatif mengisi tempat yang sama dalam  ekonomi alam  dari setiap pulau seperti yang dilakukan oleh bentuk lokal dan sub-spesies. Namun karena mareka tidak dibedakan satu sama lain oleh banyaknya perbedaan kecuali ada diantara bentuk lokal dan sub-spesies, maka mereka hampir secara universal digolongkan sebagai spesies murni .namun, tidak ada kreteria tertentu yang bisa diberikan yang dipakai untuk mengenal bentuk yang dapat bervariasi, bentuk lokal, sub-spesies dan spesies representative.

 

c. Spesies yang Memiliki Cakupan Luas, Tersedia Umum dan Banyak Bervariasi

Dengan dibimbing oleh pertimbangan teoretis, saya berfikir bahwa beberapa hasil yang menarik dapat dicapai sehubungan dengan sifat serta relasi dengan spesies yang sangat berfariasi , dengan membuat table tentang semua varietas yang ada pada beberapa flora yang dikerjakan dengan baik . pertama-tama, hal ini tampak seperti tugas sederhana, tetapi  H.C. Watson, yang telah member saya nasehat serta dukungan yang berharga , sehingga saya berhutang budai padanya , segera meyakinkan saya bahwa terdapat banyak kesulitan , bahwa kesulitan mengenai istilah-istilah, sebagaimana yang dijumpai Dr. Hooker. Maka saya akan mempersiapkan diskusi mengenai kesulitan-kesulitan tersebut untuk karya yang akan dating, serta menyiapkan table jumlah yang proporsional dari spesies yang bervariasi, setelah ,membaca naskah saya secara seksama dan telah mengamati table-tabel. Dr. Hooker memperbolehklan saya untuk menambahkannya. Ia mendapatkan bahwa pertanyaan-pertanyaan berikut ini cukup mantap. Bagaimanapun, keseluruhan subyekyang dibicarakan dengan semestinya dan secara singkat masih sedikit membingungkan. Adanya sendirian-sendirian mengenai berjuang untuk hidup dan perbedaan sifat atau ciri tidak dapat dihindari, dan pertanyaan-pertanyaan  lain setelah itu harus didiskusikan.

Alphone, Candole, dan yang lain telah menunjukkan bahwa tanaman yang mempunyai jangkauan luas sekali pada umumnya memberikan varietas-varietas. Hal ini dapat diduga, karena tanaman-tanaman tersebut tampak pada kondisi-kondisi fisik yang bermacam-macam , dank arena tanaman-tanaman tersebut sudah bersaing dengn serangkaian makhul lainnya sebagaimana yang akan kit liat selanjutnya . hal ini merupakan lingkungan yang sama atau yang lebih penting . tetapi lebih lanjut , table saya menunjukkan  spesies-spesie yang sangat umum sehingga banyak terdapat dalam individu-individu, dan spesies-spesies yang sangat umum sehingga banyak terdapat dalam individu-iondividu , dan spesies-spesies yang tersebar luas dinegaranya sendiri (dan ini merupakan pemikiran yang berbeda dari jangkauan luas, dan untuk tingkatan tertentu dari kelaziman). Sering kali menimbulkan varietas yang cukup mantap untuk dicatat dalam karya tulis  botani. Oleh karena itu. Ini merupakan spesies yang tumbuh sanagt subur atau boleh dikatakan sangat dominan , spesies-spesies yang mempunyai cangkupan luas , sangat tersebar luas dinegaranya sendiri, dan memiliki jumlah banyak pada individu-individu ini sering menghasilkan varietas yang mencolok, atau saya mengharapkan sebagai spesies baru jadi. Mungkin hal ini bisa diantisipasi , karena selama varietas harus berjuang dengan penghuni lainnya yang ada disuatu Negara agar bisa menjadi permanen tingkatannya, spesies yang sudah dominan kemungkinan besar akan menghasilkan keturunan yang sedikit termodifikasi dan masih mewarisi keuntungan-keuntungan yang dimiliki tetuanya sehingga menjadi dominan atas sesame penghuni ditempat itu, mengenai kata-kata dominan harus dipahami bahwa referensinya diberikan hanya pada bentuk-bentuk yang ikut sering satu sama lain, lebih-lebih pada anggota-anggota dari genus yang sama atau golongan yang memiliki kebiasaan hidup yang hampir sama. Mengenai jumlah individu atau spesies umum, perbandingannya berhubungan dengan anggota-anggota dari kelompok yang sama, salah satu tanaman biasa dikatakan dominan pada individu lebih banyak dan jika lebih tersebar dimana-nama dari pada tanaman dari satu Negara yang hidup dalam kondisi yang hampir sama. Tanaman jenis ini tidak kalah dominan karena ada jamur yang bersifat parasit. Yang jumlahnya tak terhingga pada individu-individu dan lebih menyebar dimana-mana. Tetapi jika tanaman air atau jamur yang menjadi parasit sampai berlebihan dalam kelompoknya yang berkaitan tersebut diatas, maka akan menjadi dominan dalam golongannya sendiri.

Atas dasar kenyatan bahwa ini adalah hokum alam, saya kira kita dapat memahami jumlah fakta seperti berikut , yang tidak dapat dijelaskan pada pandangan lain. Siapa pun yang melakukan persilangan tahu betapa tidak menyenangkannya terkena basah pada waktu pembuahan bunga, akan tetapi banyak sekali bunga yang benamg sari dan stigmanya berlangsung  terpengaruh oleh keadaan udara! Jika persilangan yang kadang kala terjadi sangat penting , maka dipastikan bahwa benang sari dan putik bunga letaknya begitu berdekatan satu sama lain sehingga terjadi pembuahan sendiri : adanya kebebesan penuh bagi masuknya benang sari dari individu lain akan menjelaskan keadaan pernafasan organ tersebut diatas, sebaliknya banyak bungayang organ pembuahannya tertutup rapat, seperti yang terdapat pada keluarga besar papilionaceous. Tetapi ini hampir selalu memberikan berbagai keindahan dan adaptasi sehubungan dengan kedatangan serangga. Begitu pentingnya kunjungan lebah bagi banyak bunga papilionaceous, sehingga kesuburannya akan sangat berkurang jika kunjungan ini dicegah. Nah, hampir tidak memungkinnkan bagi serangga untuk terbang dari bunga yang satu ke bunga lain dengan tidak membawa serbuk sari dan bunga satu kebunga yang lain untuk kepentingan tanaman,

Serangga bekerja seperti pensil bulu unta, dan untuk memperoleh kesuburan (keturunan) maka cakup  dengan menyatu benang sari dari sekuntum bunga dan putik dari bunga yang lain bulu-bulu sikatnya yang sama. Akan tetapi hal ini tadakboleh diartikan bahwa dengan begitu maka lebah akan membuat banyak sekali blasteran antara spesies yang berbeda, karena jika serbuk sari tanaman sendiri dan serbuk sari tanaman itu sendiri dan serbuk sari bunga yang pertama akan terlalu kuat dan selalu merusak serbuk sari bunga dari tanaman lain sebagaimana yang telah diperlihatkan oleh Gartner mengenal pengaruh serbuk sari dan tanaman lain .bila putik bunga meloncat kearah banang sari , atau bergerak  perlahan-lahan mendekati usaha tersebut tampaknya hanya untuk beradaptasi agar bisa melakukan perbuatan sendiri . dari ini sudah jelas berguna untuk tujuan ini. Pekerjaan serangga sering kali diperlakukan untuk mendorong putik meloncat mendekat, sebagaimana yang telah ditunjukkan oleh Kolreuter tentang kasus barberry. Dan genus ini tanpaknya memiliki kemampuan khusus untuk melakukan pembuahan sendiri. Telah amat terkenal bahwa, jika bentuk atau varuetas yang sangat terpadu ditanam secara berdekatan satu sama lain, maka kiranya hampir tidak mungkin untuk menghasilkan benih yang murni, maka sebagian besar mereka melakukan persilangan secara alami, didalam banyak kasus lainnya, terdapat usaha atau kemampuan khusus yang berhasil mencegah stigma bunga menerima serbuk sari dari bunga yang sama, seperti yang dapat saya perhatiakan dalam karya Sprengel dan penulis lainnya. Dan juga dari hasil pengamatan saya sendiri . misalnya, pada bunga Lobelia Fulgens, terdapat usaha atau kemampuan yang sempurna dan bagus, dengan ini seluruh butir serbuk sari yang begitu banyak jumlahnya tersapu bersih dari benang sari yang melekat menjadi satu pada setiap bunga sebelum stibuk sargma bunga individu tersebut siap menerima serbuk sari tadi . dan oleh karena bungan ini tidak pernah dikunjungi serangga, paling tidak yang terdapat eikebun saya sendiri maka kemampuan sendiri bunga itu tak pernah menghasilkan biji , wallaupun dengan menepatkan serbuk-serbuk sari itu dari satu bunga ke setigma  bunga lain, saya dapat menghasilkan banyak benih , pada berbagai kasus lainya, meskipun tidak terdapat kemauan mekanisme khusus untuk mencegah stigma bungan untuk menerima serbuk sari dari bunga yang sama, namun sebagaimana yang telah diperhatiakan oleh sprengel, dan belum lama ini oleh Hilderand, dan penulis-penulis lainya , dan yang dapat sama terima, benang sari bisa meletup sebelum stigma siap akan tetapi serbuk sari bunga yang belum siap, sehingga jenis tanaman yang diberi nama tanaman “dichogamous” memiliki kelamin terpisah , dan persilangan bisa dilakukan . dengan demikian pula halnya dengan tanaman dimofik dan trimofik secara timbale balik yang telah disebutkan sebelumnya. Betapa anehnya fakta ini! Betapa ginjilnya bahwa serbuk sari dan permukaan stigma dari bunga yang sama, ketidakpun diletakkan saling berdekatan sekali dan seolah-olah dalam banyak hal, tujuan serupa untuk melakukan pembuahan sendiri tidak ada gunanya bagi keduanya, berupa sederhananya fakta-fakta ini jika ditengerai atas dasar persilangan yang kadang-kadang terjadidan menguntungkan serta amat penting amat penting bagi individu yang berbeda!

 

4. Hukum-hukum Variasi

a. Dampak Terpakai dan Tidak Terpakainya Bagian Sebagaimana Dikendalikan oleh Seleksi Alam

Dari fakta-fakta diketahui bahwa tidak terpakainya binatang-binatang piaraan telah memperkuat serta memperluas bagin-bagian tertentu, sedangkan jika tidak terpakai telah memperlemah, dan bahwa modifikasi-modifikasi semacam itu diwariskan. Di alam bebas, kita tidak mempunyai standar perbandingan untuk menentukan dampak terpakainya dan tidak terpakainya bagian yang sudah berlangsung lama ini, karena kita tidak tahu bentuk-bentuk serta leluhurnya. Namun banyak binatang mempunyai struktur yang bisa diterangkan dengan baik lewat dampak ketiadaan pemakaian. Seperti yang dikemukakan oleh Profesor Owen, tidak ada keanehan yang lebih besar pada burung yang tidak bisa terbang di alam bebas, namun di Negara ini ada beberapa burung seperti itu. Itik yang suka berkelahi dari Amerika Selatan hanya dapat mengepak-ngepakan sayapnya di atas permukaan air, dan mempunyai sayap yang kondisinya hampir sama dengan itik Aylesbury yang dipelihara. Menurut Cunningham, fakta yang menonjol ialah bahwa burung-burung yang masih muda dapat terbang, sedangkan yang dewasa justru kehilanga daya untuk terbang. Karena sebagian burung mencari makanannya di tanah, jarang terbang, kecuali untuk meloloskan diri dari mara bahaya, ada kemungkinan bahwa keadaan hampir tak bersayap dari beberapa burung tadi disebabkan oleh tidak dipakainya sayap, burung-burung ini tinggal dan diam di beberapa pulau samudera yang tidak di huni burung-burung buas. Burung unta selalu tinggal di daratan, dan untuk menghadapi bahaya, ia tidak dapat meloloskan diri dengan terbang, tetapi ia bisa mempertahankan diri dengan menyepak musuhnya dengan tangkas seperti yang dilakukan binatang berkaki empat. Kita boleh jadi percaya bahwa nenek moyang genus burung onta mempunyai kebiasaan seperti burung bustard, dan bahwa dari generasi ke generasi ukuran serta beratnya semakin bertambah, kakinya lebih sering dipakai sehingga mahirnya mereka tidak dapat terbang.

Dalam beberapa kasus, kita mungkin dapat megatakan bahwa hal tersebut disebabkan oleh modifikasi tidak terpakainya struktur, terutama oleh karena seleksi alam. Wollaston telah menemukan buktu yang amat penting bahwa 200 ekor kumbang, dari 550 spesies (tetapi lebih banyak yang tidak diketahui yang tinggal di madeira) sayapnya lumpuh sehingga tidak dapat terbang, dan bahwa dari 29 genus endemic, tidak kurang dari 23 spesies yang mengalami kondisi yang sama. Beberapa fakta mengatakan bahwa kumbang di berbagai tempat di dunia ini tertiup topan sampai ke laut dan mati; bahwa kumbang di Madeira sebagaimana yang dilihat oleh Wollaston, pada bersembunyi sampai badai reda dan matahari bersinar kembali. Bahwa proporsi kumbag bersayap lebih banyak tinggal di gurun daripada yang tinggal di Madeira sendiri dan terutama adanya faktor luar biasa yang ditandaskan dengan kuat oleh Wallaston sendiri, bahwa sejumlah besar kelompok kumbang yang bergitu banyak jumlahnya mungkin di tempat lain mutlak perlu menggunakan sayap, tetapi di tempat ini hampir tidak meggunakan sama sekali, beberapa keadaan ini memberikan fakta bahwa keadaan tanpa sayap yang menimpa banyak kumbang di Madeira disebabkan terutma oleh pegaruh seleksi alam, mungkin digabung dengan tidak dipakainya sayap. Lewat generasi secara terus-menerus setiap kumbang yang secara individu jarang sekali terbang karena tidak sempurnannya perkembangan sayap atau karena kebiasaan malas terbang. Justru memunyai kesempatan baik untuk selamat dan tetap hidup, karena tidak tertiup oleh angin topan masuk laut. Sebaliknya yang bersayap sempurna dan pandai terbang paling sering tertiup badai dan mati dilaut.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Kota Madeira

 

 

 

 

 

 

 

 

 

Kumbang Tak bersayap dan Kumbang Bersayap

 

 

 

b. Aklimatisasi

Kebiasaan yang berlaku turun-temurun pada tanaman, seperti pada saat berbunga, pada waktu tidur, pada saat diperlukan sejumlah air bagi biji untuk bisa tumbuh, dan sebagainya, dialami oleh semua tumbuhan. Sebagaimana sangat lezim bagi spesies berbeda yang termasuk genus yang sama untuk tumbuh di negeri-negeri yang beriklim panas dan berhawa dingin, apabila benar bahwa semua spesies dari genus yang sama berasal dari satu bentuk tetua tunggal, maka penyusunan terhadapa lingkungan pasti telah terjadi secara turun temurun dan telah berlangsung lama.

Penelitian dari H.C Watson terhadap spesies tanaman dari eropa yang didatangkan dari Azores ke Inggris bisa dikemukakan fakta otentik tentang spesies yang tersebar luas, menurut tarikh sejarah, meliputi daerah panas dan dingin, dan sebaliknya; akan tetapi kita tidak tahu pasti apakah binatang-binatang ini sangat beradaptasi dengan iklim asalnya, meskipun dalam semua kasus yang bersifat umum kita beranggapan bahwa kasusnya memang demikian; kita juga tidak tahu apakah binatang-binatang tadi akhirnya telah menyesuaikan diri khususnya terhadap tempat kediamannya yang baru, supaya lebih cocok daripada sewaktu mereka datang untuk pertama kalinya dahulu.

Pada umumnya, kita bisa menarik kesimpulan bahwa kebiasaan, atau pemakaian dan tidak adanya pemakaian dalam beberapa hal, telah memainkan peranan penting dalam modifikasi kerangka dan konstitusi, akan tetapi dampaknya seringkali sangat terkombinasi dengan seleksi alam dari variasi-variasi yang ada sejak lahir dan kadang-kadang terlalu dikuasai oleh seleksi alam tersebut.

c. Variasi yang Saling Berhubungan

Yang dimaksudkan dengan ungkapan ini adalah bahwa seluruh organisme atau sangat terikat satu sama lain selama pertumbuhan dan perkembangannya sehingga apabila terjadi sedikit variasi pada bagian manapun dan terakumulasi melalui seleksi alam, maka bagian lain pun termodifikasi.

Salah satu kasus riil yang paling jelas adalah bahwa variasi struktur pada larva secara alami cenderung mempengaruhi struktur binatang di alam bebas. Beberapa bagian tubuh yang proporsional dan yang pada periode embrio awal sama strukturnya, dan yang perlu ditampakkan pada kondisi serupa, tampaknya sangat mudah berubah dengan cara serupa.

d. Struktur Ganda, Rudimen, dan Sederhana yang Bisa Bervariasi

Seolah-olah sudah menjadi peraturan, sebagaimana yang dikemukakan Is. Geoofroy St. Hilaire, baik mengenai varietas maupun spesies, bahwa apabila bagian atau organ mana pun diulang berkali-kali pada individu yang sama seperti tulang belakang pada ular dan kepala putik pada bunga polyandrous, jumlahnya bisa bervariasi. Sedangkan bagian atau organ yang sama, jika itu terjadi pada jumlah lebih sedikit, beberapa ahli botani mengungkapkan bahwa bagian-bagian yang bersifat ganda sangat mudah berubah strukturnya. Karena “pengulangan vegetative” adalah suat tanda organisasi yang sederhana, seperti yang dikatakan oleh Profesor Owen, maka pernyatan-pernyatan yang terdahulu sesuai dengan pendapat umum para naturalis yakni bahwa makhluk yang masih bertataran rendah menurut skala alam lebih bervariasi daripada yang tatarannya lebih tinggi. Yang dimaksud dengan tataran rendah di sini adalah bahwa beberapa bagian struktur organisasi agak lebih dikhususkan untuk fungsi-fungsi tertentu, dan selama bagian yang sama itu harus melakukan pekerjaan berbeda, barangkali kita dapat memahami mengapa tetap bervariasi, yakni mengapa seleksi alam tidak melindungi atau menolak setiap adanya penyimpangan dalam bentuk ketika organ atau bagian harus melakukan pekerjaanya untuk tujuan tertentu. Sama halnya dnegan sebilah pisau yang harus digunakan untuk memotong segala macam barang, bisa jadi bentuknya beraneka ragam, sedangkan alat untuk tujuan tertentu harus berbentuk khusus. Kita jangn pernah melupakan bahwa seleksi alam dapat bertindak sendirian melalui dan untuk kepentingan semua makhluk hidup.

Bagian rudiment, sebagaimana kita ketahui secara umum, cenderung amat bervariasi. Kita harus kembali lagi pada masalah ini, dan menambahkan bahwa keanekaragaman tersebut rupanya karena tidak dimanfaatkan, dank arena seleksi alam, maka tidak memilikikekuatan untuk mengecek penyimpangan yang terjadi pada strukturnya.

e. Ciri-ciri Khusus Lebih Bervariasi dari Ciri Umum

Contoh dari permasalah ini adalah jika dalam sebuah genus besar tumbuhan beberapa spesies mempunyai bunga berwarna biru dan beberapa yang lain memiliki bunga berwarna merah, maka warna tersebut hanya merupakan cirri khusus, dan tak seorang pun akan merasa heran terhadap terhadap spesies biru yang berubah menjadi merah, atau sebaliknya. Tetapi bila semua spesies mempunyai bunga berwarna biru, maka warna tersebut akan menjadi cirri umum dan variasinya akan menjadi keadaan yang luar biasa.

Fakta ini menunjukkan bahwa cirri umum, jika merosot nilainya, dan hanya bernilai khusus, seringkali menjadi bervariasi walaupun arti pentingnya menurut fisiologis mengkin tetap sama. Atau dengan kata lain semakin tidak normal perbedaan organ dalam berbagai spesies dan kelompok yan sama, semakin mudah terjadi penyimpangan pada individu.

f. Spesies yang Berbeda Menunjukkan Ciri yang Serupa

Pernyatan ini akan mudah dimengerti dengan melihat kembali kepada ras binatang piaraan kita. Ras jenis burung merpati yang paling menonjol tersebar luas di berbagai Negara memperlihatkan sub-variasi dengan bulu kepala yang berubah, dan bulu pada kaki, karakter atau cirri yang tidak dimiliki oleh burung serupa pada dua jenis ras yang berbeda atau lebih. Seringkali adanya 14 atau bahkan 16 bulu ekor pada burung merpati puter bisa dianggap sebagai variasi yang mencerminkan struktur normal dari ras merpati lain, yaitu fantail (merpati ekor kipas).

5. Variasi Genetik sebagai Dasar Evolusi dan Mutasi

a. Pengertian, Macam-macam dan Sebab-sebab Mutasi

 

 

Penggandaan pada kromosom

 

 

 

 

 

 

 

 

 

 

 

 

Mutasi adalah perubahan pada struktur kimia gen yang bersifat turun-temurun yang terjadi bisa secara spontan atau tidak spontan oleh zat kimia, radiasi sinar radioaktif, terinfeksi virus, dan lain sebagainya.

Mutasi dapat melibatkan duplikasi fragmen DNA yang besar, yang merupakan sumber utama bahan baku untuk gen baru yang berevolusi, dengan puluhan sampai ratusan gen terduplikasi pada genom hewan setiap satu juta tahun. Kebanyakan gen merupakan bagian dari famili gen leluhur yang sama yang lebih besar.

Gen dihasilkan oleh beberapa metode, umumnya melalui duplikasi dan mutasi gen leluhur, atau dengan merekombinasi bagian gen yang berbeda, membentuk kombinasi baru dengan fungsi yang baru. Sebagai contoh, mata manusia menggunakan empat gen untuk menghasilkan struktur yang dapat merasakan cahaya: tiga untuk sel kerucut, dan satu untuk sel batang; keseluruhannya berasal dari satu gen leluhur tunggal. Keuntungan duplikasi gen (atau bahkan keseluruhan genom) adalah bahwa tumpang tindih atau fungsi berlebih pada gen ganda mengijinkan alel-alel dipertahankan (jika tidak akan membahayakan), sehingga meningkatkan keanekaragaman genetika.

 

 

 

 

 

 

Aglonema Gading Mas, Hasil Mutasi

 

 

Perubahan pada bilangan kromosom dapat melibatkan mutasi yang bahkan lebih besar, dengan segmen DNA dalam kromosom terputus kemudian tersusun kembali. Sebagai contoh, dua kromosom pada genus Homo bersatu membentuk kromosom 2 manusia; pernyatuan ini tidak terjadi pada garis keturunan kera lainnya, dan tetap dipertahankan sebagai dua kromosom terpisah.[38] Peran paling penting penataan ulang kromosom ini pada evolusi kemungkinan adalah untuk mempercepat divergensi populasi menjadi spesies baru dengan membuat populasi tidak saling berkembang biak, sehingga mempertahankan perbedaan genetika antara populasi ini.

Urutan DNA yang dapat berpindah pada genom, seperti transposon, merupakan bagian utama pada bahan genetika tanaman dan hewan, dan dapat memiliki peran penting pada evolusi genom. Sebagai contoh, lebih dari satu juta kopi urutan Alu terdapat pada genom manusia, dan urutan-urutan ini telah digunakan untuk menjalankan fungsi seperti regulasi ekspresi gen. Efek lain dari urutan DNA yang bergerak ini adalah ketika ia berpindah dalam suatu genom, ia dapat memutasikan atau mendelesi gen yang telah ada, sehingga menghasilkan keanekaragaman genetika.

Gejala alam yang mengarah pada bentuk dan struktur tubuh dari populasi suatu organisme sehingga mengalami evolusi disebut mutasi. Hal ini sesuai dengan yang dikatakan Hugo de Vries, seorang ahli botani Belanda bahwa variasi genetik merupakan akibat dari mutasi gen yang menyebabkan terjadinya evolusi. Mutasi dapat mengubah informasi genetik terhadap individu baru dan menambah jumlah variasi dalam suatu populasi. Banyak sekali mutasi terjadi dalam organisme yang telah mampu beradaptasi dengan alam dan hanya sedikit mutasi yang mendatangkan keuntungan bagi individu-individu yang mengalaminya. Sebaliknya, banyak mutasi yang merusak dan menyebabkan kematian. Organisme yang telah mampu beradaptasi dengan alam, tiba-tiba harus memiliki bagian-bagian tubuh yang tidak harmonis dengan lingkungan. Tentu saja organisme tersebut harus tersisih dari lingkungannya. Bagi organisme mutan yang beruntung, ia akan terus bertahan hidup, mewariskan gen mutannya turun-temurun kepada generasi baru. Hal ini dapat digambarkan dalam bagan berikut ini:

 

 

 

 

Bagan Proses Evolusi karena Mutasi

 

Bagan tersebut di atas digambarkan sebagai proses evolusi karena mutasi. Generasi baru akan semakin bervariasi apabila di antara mutan yang subur (fertil) dapat melakukan perkawinan dan membentuk rekombinan. Sekarang, manusia dengan kecanggihan ilmunya dapat membuat evolusi cepat dengan adanya rekayasa genetik sehingga mampu menciptakan varian baru atau mutan buatan dalam waktu singkat.

Sebenarnya mutasi dapat dikatakan sebagai sumber terbentuknya varian karena hasil mutasi tetap dapat diwariskan. Dengan demikian, perubahan sifat pun tampak pada varian dari generasi ke generasi. Namun, tidak semua produk mutasi dapat menghasilkan keturunan (subur) sebab umumnya mutan bersifat steril. Darwin dari hasil penelitiannya mengemukakan pendapat pendapatnya bahwa variasi-variasi yang dapat diwariskan merupakan bahan mentah dari perubahan struktur yang bersifat revolusioner, termasuk variasi akibat mutasi. Bukti-bukti menunjukkan bahwa mutasi terjadi secara sembarang tempat, sembarang waktu, di luar keteraturan sistem kehidupan sehingga menambah keragaman jenis makhluk hidup. Apa pun hasil mutasi, sebenarnya Sang Maha Pencipta tidak pernah sia-sia menciptakan sesuatu. Sama halnya dengan gen-gen lainnya, gen mutan di dalam populasinya juga mengalami seleksi alam terus-menerus. Sementara melewati proses seleksi, seluruh varian memiliki risiko mutasi menjadi varian baru, yang sesuai ataupun tidak sesuai dengan kondisi lingkungannya. Namun, jangan lupa bahwa pada setiap organisme selalu ada gen yang diwariskan dari tetua kepada keturunannya dan gen ini tidak mengalami mutasi, tidak juga mengalami kepunahan akibat seleksi alam. Artinya, di sepanjang lintas evolusi ada saja gen yang eksis secara abadi, selalu adaptif terhadap berbagai perubahan alam sehingga kita dapat melihat dengan jelas adanya kekerabatan struktur tubuh di antara berbagai kelompok organisme. Persis seperti yang digambarkan oleh Linnaeus dan Darwin, evolusi biologi itu seperti sebuah pohon yang memiliki cabang utama dan ranting-rantingnya.

Peristiwa mutasi gen dapat tidak menyebabkan perubahan pembentukan asam amino sehingga tidak menimbulkan efek yang berarti. Namun, jika mutasi gen menyebabkan perubahan pembentukan asam amino maka fungsi gen tersebut juga berubah. Perubahan fungsi ini dapat diamati melalui kelainankelainan yang terjadi pada individu yang mengalami mutasi. Bagaimana peristiwa mutasi dapat menyebabkan terjadinya evolusi? Setiap sel makhluk hidup dapat mengalami mutasi setiap saat, tetapi tidak semua mutasi dapat diwariskan pada keturunannya. Mutasi yang terjadi pada sel soma (sel tubuh) tidak akan diwariskan. Setelah individu yang mengalami mutasi meninggal maka mutasi yang terjadi juga akan menghilang bersamanya. Sementara itu, mutasi yang terjadi pada sel-sel kelamin akan diwariskan pada keturunannya. Adanya bahanbahan mutagen dalam gonad dapat menyebabkan terjadinya mutasi pada sel kelamin jantan (sperma) dan sel kelamin betina (ovum). Dengan demikian, gen yang bermutasi akan selalu ada dalam setiap sel keturunan. Setiap spesies makhluk hidup memiliki sifat genotip dan fenotip (fisik) yang berbeda. Gen-gen yang menentukan fenotip individu tersimpan di kromosom dalam nukleus. Gen-gen sendiri tersusun dalam DNA (asam deoksiribonukleat). Sementara itu, DNA disusun oleh nukleotida yang terdiri dari basa nitrogen, gula deoksiribosa, dan fosfat. Perubahan yang terjadi pada susunan kimia DNA dapat mengakibatkan perubahan sifat individu. Perubahan ini disebut mutasi gen.

Sadar bahwa seleksi alam tidak berfungsi mendorong terjadinya evolusi, evolusionis lalu memunculkan konsep “mutasi” dalam teori mereka di abad ke-20. Mutasi adalah perubahan yang terjadi pada gen makhluk hidup karena pengaruh luar seperti radiasi. Evolusionis menyatakan perubahan ini menyebabkan organism berevolusi. Akan tetapi, berbagai penemuan ilmiah menolak pernyatan ini, sebab semua mutasi yang pernah diketahui, hanya menyebabkan kerugian pada makhluk hidup. Semua mutasi yang terjadi pada manusia mengakibatkan kelainan

mental maupun fisik seperti mongolisme (Down’s Syndrome), albinisme (albino), dwarfisme(tubuh pendek), atau penyakit lain seperti kanker.

Alasan lain mengapa mutasi mustahil menyebabkan makhluk hidup berevolusi adalah mutasi tidak menambahkan informasi genetis baru pada suatu organisme. Mutasi menyebabkan susunan informasi genetis yang telah ada menjadi berubah secara acak, mirip seperti mengocok kartu. Dengan kata lain, tidak ada informasi genetis baru yang dimunculkan oleh mutasi. Namun, teori evolusi menyatakan bahwa informasi genetis makhluk hidup bertambah seiring dengan waktu. Sebagai contoh, bakteri dengan struktur sangat sederhana tersusun atas 2.000 jenis protein yang berbeda, sedangkan manusia memiliki 100.000 jenis protein. Tepatnya 98.000 protein baru harus “didapatkan” agar sebuah bakteri berevolusi menjadi manusia. Jadi, protein-protein ini tidak mungkin terbentuk melalui mutasi, sebab mutasi tidak dapat menambahkan apa pun pada rantai DNA.

Tidak mengherankan jika sejauh ini tak pernah diamati satu mutasi pun yang mampu memperbaiki informasi genetis dari suatu bentuk kehidupan mana pun. Kendatipun dirinya seorang evolusionis, mantan Presiden Akademi Ilmu Pengetahuan Prancis, Pierre Paul Grassé, membuat pengakuan berikut ini: “Tidak peduli seberapa banyak mutasi yang ada, mutasi ini tidak menghasilkan bentuk evolusi apa pun”.

 

 

 

 

 

 

 

 

 

Kelainan yang Nampak pada bayi “Kembar Siam” manusia disebabkan oleh mutasi. Tubuh katak kembar yang masih saling melekat saat lahir ini memperlihatkan kepada kita akibat dari mutasi.

 

Mutasi diartikan sebagai pemutusan atau penggantian yang terjadi pada molekul DNA, yang ditemukan dalam inti sel dari setiap makhluk hidup dan memuat semua informasi genetik darinya. Pemutusan atau penggantian ini diakibatkan oleh pengaruh-pengaruh luar seperti radiasi atau reaksi kimiawi. Setiap mutasi adalah sebuah “kecelakaan”, dan merusak nukleotida-nukleotida penyusun DNA atau mengubah kedudukan mereka. Hampir selalu, mereka menyebabkan kerusakan dan perubahan yang sedemikian besar sehingga sel tidak bisa memperbaikinya.

Mutasi, yang sering dijadikan tempat berlindung evolusionis, bukan sebuah tongkat sulap yang bisa merubah makhluk hidup ke bentuk yang lebih maju dan sempurna. Dampak langsung mutasi adalah membahayakan. Perubahan-perubahan yang diakibatkan oleh mutasi hanya akan serupa dengan apa yang dialami penduduk Hiroshima, Nagasaki, dan Chernobyl: yaitu kematian, cacat, dan kelainan tubuh…

Alasan di balik ini sangatlah sederhana: DNA memiliki struktur sangat kompleks, dan perubahan-perubahan acak hanya akan merusakkannya. Ahli biologi B. G. Ranganathan menyatakan:

Pertama, mutasi asli sangat jarang terjadi di alam. Kedua, kebanyakan mutasi adalah berbahaya karena terjadi secara acak, bukan secara teratur merubah struktur gen; setiap perubahan acak dalam suatu sistem yang sangat tertata rapi hanya akan memperburuk, bukan memperbaiki. Sebagai contoh, jika gempa bumi menggoncang struktur yang tertata rapi seperti gedung, akan terjadi perubahan acak pada kerangka bangunan tersebut yang, dapat dipastikan, tidak akan merupakan suatu perbaikan.


Kaki yang cacat, hasil mutasi.

 

 

Tidak mengherankan, tak satupun mutasi bermanfaat telah teramati sejauh ini. Semua mutasi telah terbukti berbahaya. Ilmuwan evolusionis, Warren Weaver, mengomentari laporan yang disusun oleh Committee on Genetic Effects of Atomic Radiation (Komite Dampak Genetik dari Radiasi Atom), yang dibentuk untuk menyelidiki mutasi yang mungkin terjadi akibat senjata nuklir pada Perang Dunia II :

Banyak yang akan tercengang oleh pernyataan bahwa hampir semua gen termutasi yang telah dikenal ternyata membahayakan. Jika mutasi adalah bagian yang diperlukan dari proses evolusi, bagaimana mungkin suatu pengaruh baik—evolusi ke bentuk kehidupan yang lebih tinggi—dihasilkan dari mutasi yang umumnya membahayakan?

Setiap usaha yang dilakukan untuk “menghasilkan mutasi yang bermanfaat” berakhir dengan kegagalan. Selama puluhan tahun, evolusionis melakukan berbagai percobaan untuk menghasilkan mutasi pada lalat buah, karena serangga ini berkembang biak sedemikian cepat sehingga mutasi akan lebih cepat terlihat. Keturunan demi keturunan lalat buah ini dimutasikan, namun tak satu pun mutasi bermanfaat yang teramati. Ahli genetika evolusionis, Gordon Taylor, akhirnya menulis:

Adalah sebuah kenyataan menarik, tetapi tidak sering disebutkan bahwa, meskipun para ahli genetika telah mengembangbiakkan lalat buah selama lebih dari 60 tahun di laboratorium seluruh dunia—lalat yang menghasilkan keturunan baru setiap sebelas hari—mereka tidak pernah melihat munculnya spesies baru atau bahkan enzim baru.

Sejak awal abad ke-20, ahli biologi evolusi telah mencari-cari contoh mutasi menguntungkan dengan menciptakan lalat mutan. Tetapi, usaha ini selalu menghasilkan makhluk yang sakit dan cacat. Gambar kiri menunjukkan kepala seekor lalat buah yang wajar, dan gambar kanan menunjukkan kepala lalat buah dengan kaki yang keluar darinya, hasil mutasi

 

 

 

 

 

 

 

 

 

 

 

 

 

Peneliti lainnya, Michael Pitman, berkomentar tentang kegagalan percobaan-percobaan yang dilakukan pada lalat buah:

Morgan, Goldschmidt, Muller, dan ahli genetika yang lain telah menghadapkan beberapa lalat buah pada kondisi ekstrim seperti panas, dingin, terang, gelap dan perlakuan dengan zat kimia serta radiasi. Semua jenis mutasi, semuanya hampir tak berarti atau benar-benar merugikan, telah dihasilkan. Inikah evolusi buatan manusia? Tidak juga: Hanya sebagian kecil dari monster buatan para ahli genetika tersebut yang mungkin mampu bertahan hidup di luar botol tempat mereka dikembangbiakkan. Pada kenyataannya mutan-mutan tersebut mati, mandul, atau cenderung kembali ke jenis asalnya.

 

 

Katak mutan lahir dengan kaki pincang.

 

Hal yang sama berlaku bagi manusia. Semua mutasi yang teramati pada manusia menghasilkan kerugian. Semua mutasi yang terjadi pada manusia mengakibatkan cacat fisik, dalam bentuk penyakit mongolisme, sindroma Down, albinisme (bulai), cebol atau kanker. Jelaslah, sebuah proses yang membuat manusia cacat atau sakit tidak mungkin menjadi “mekanisme evolusi” – evolusi seharusnya menghasilkan bentuk-bentuk yang lebih mampu bertahan hidup.

Ahli penyakit Amerika David A. Demick mencatat sebagai berikut dalam sebuah artikel ilmiah tentang mutasi:

Ribuan penyakit manusia yang berhubungan dengan mutasi genetik telah dicatat pada beberapa tahun terakhir, dan lebih banyak lagi yang sedang dikaji. Sebuah buku rujukan terbaru genetika kedokteran mendaftar sekitar 4500 penyakit genetik yang berbeda. Beberapa gejala menurun yang diketahui secara klinis di masa sebelum analisa genetika molekuler (seperti gejala Marfan) sekarang ternyata diketahui berbeda jenis; yaitu berhubungan dengan berbagai mutasi yang berbeda… Dengan sederetan penyakit manusia yang disebabkan oleh mutasi ini, apakah dampak baiknya? Dengan ribuan contoh mutasi berbahaya yang ada, tentunya dimungkinkan memperlihatkan beberapa mutasi berguna jika saja evolusi makro benar. Hal ini [mutasi berguna] akan diperlukan bukan hanya untuk evolusi ke bentuk lebih kompleks, tapi juga untuk mengurangi dampak buruk dari banyak mutasi berbahaya. Tetapi, ketika tiba saatnya untuk menunjukkan mutasi berguna, ilmuwan-ilmuwan evolusionis anehnya hanya bungkam.

 

 

 

 


 

Bentuk dan fungsi sel darah merah yang dirusak pada anemia sel-sabit.
Akibatnya, daya ikat oksigen sel berkurang
Lalat mutan dengan sayap yang cacat.

 

 

 

 

Satu-satunya contoh “mutasi berguna” yang diberikan oleh ahli biologi evolusi adalah penyakit yang dikenal sebagai anemia sel sabit. Pada penyakit ini, molekul hemoglobin, yang membawa oksigen dalam darah, rusak karena mutasi, dan mengalami perubahan bentuk. Akibatnya, kemampuan molekul hemoglobin untuk mengangkut oksigen benar-benar terganggu. Karena itu, penderita anemia sel sabit mengalami kesulitan bernapas. Namun demikian, contoh mutasi ini, yang dijabarkan dalam bab kelainan darah pada buku kedokteran, anehnya dinilai oleh sebagian ahli biologi evolusi sebagai “mutasi berguna”. Mereka mengatakan bahwa kekebalan terbatas terhadap malaria pada penderita anemia sel sabit adalah sebuah “hadiah” dari evolusi. Dengan alur pemikiran yang sama, seseorang bisa mengatakan bahwa, karena orang yang dilahirkan dengan kelumpuhan kaki genetik tidak mampu berjalan dan jadinya selamat dari kematian karena kecelakaan lalu lintas, maka kelumpuhan kaki genetik tersebut adalah sebuah ”sifat genetik yang menguntungkan”. Pemikiran seperti ini jelas-jelas tidak berdasar.

Jelaslah bahwa mutasi hanyalah suatu mekanisme yang merusak. Pierre-Paul Grasse, mantan ketua French Academy of Sciences, menjelaskan dengan gamblang dalam komentarnya tentang mutasi. Grasse, mengibaratkan mutasi sebagai “kesalahan menulis huruf ketika menyalin sebuah tulisan”. Dan sebagaimana mutasi, kesalahan huruf tidak bisa menghasilkan suatu informasi baru, tetapi hanya merusak informasi yang telah ada. Grasse menjelaskan kenyataan ini sebagai berikut:

Mutasi, di suatu saat, terjadi secara terpisah. Mutasi tidak saling melengkapi satu sama lain, ataupun menumpuk pada keturunan selanjutnya menuju arah tertentu. Mereka merubah apa yang telah ada sebelumnya, tetapi, walau bagaimanapun, mereka melakukannya secara tidak teratur,… Segera setelah beberapa ketidakteraturan, meskipun kecil, terjadi pada makhluk yang teratur, penyakit, dan kemudian kematian, akan mengikuti. Tidak mungkin ada penyatuan antara fenomena kehidupan dengan ketidakteraturan.

Jadi berdasarkan alasan tersebut, seperti yang Grasse katakan, “Tidak peduli berapa sering terjadi, mutasi tidak menghasilkan satu pun bentuk evolusi.

Efek Pleiotropik

Bukti terpenting bahwa mutasi membawa pada kerusakan adalah proses penyandian genetik. Hampir semua gen pada makhluk hidup yang sepenuhnya berkembang membawa lebih dari satu macam informasi. Sebagai contoh, satu gen mungkin mengatur sifat tinggi sekaligus warna mata pada suatu organisme. Ahli mikrobiologi, Michael Denton, menjelaskan sifat gen pada organisme tingkat tinggi seperti manusia ini, sebagai berikut:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pengaruh dari gen pada perkembangan secara tak terduga sering kali beragam. Pada tikus rumah, hampir semua gen warna kulit memiliki beberapa pengaruh pada ukuran tubuh. Dari tujuh belas mutasi warna mata yang dipicu sinar X pada lalat buah Drosophila melanogaster, empat belas diantaranya mempengaruhi bentuk organ kelamin betina, sifat yang orang akan kira tidak ada hubungannya dengan warna mata. Hampir setiap gen yang telah dipelajari pada organisme tingkat tinggi diketahui mempengaruhi lebih dari satu sistem organ, sebuah efek beragam yang dikenal sebagai pleiotropi. Seperti pendapat Mayr dalam Population, Species and Evolution: “Sangat diragukan apakah ada gen yang tidak pleiotropik pada organisme tingkat tinggi.”

Karena sifat struktur genetik makhluk hidup ini, setiap perubahan tak disengaja karena mutasi, pada gen mana saja dalam DNA, akan mempengaruhi lebih dari satu organ. Akibatnya, mutasi ini tidak akan terbatas pada satu bagian tubuh saja, tetapi akan memperlihatkan lebih banyak dampak merusaknya. Bahkan jika satu dari dampak ini ternyata menguntungkan, sebagai hasil dari kebetulan yang sangat jarang, pengaruh yang tidak bisa dihindari dari kerusakan yang disebabkannya akan jauh lebih terasa daripada manfaat tersebut.

Sebagai rangkuman, ada tiga alasan utama mengapa mutasi tidak memungkinkan terjadinya evolusi:

  1. Pengaruh langsung dari mutasi adalah membahayakan: Karena terjadi secara acak, mutasi hampir selalu merugikan makhluk hidup yang mengalaminya. Nalar kita mengatakan bahwa campur tangan tak berkesadaran [atau perubahan acak] pada sebuah struktur yang sempurna dan kompleks tidak akan memperbaiki struktur tersebut, tetapi malah merusaknya. Dan memang, tidak ada “mutasi berguna” yang pernah teramati.
  2. Mutasi tidak menambahkan informasi baru pada DNA suatu organisme: Unsur-unsur penyusun informasi genetik menjadi terenggut dari tempatnya, hancur atau terbawa ke tempat lain. Mutasi tidak dapat memberi makhluk hidup organ atau sifat baru. Mutasi hanya mengakibatkan kecacatan seperti kaki yang muncul di punggung atau telinga di perut.
  3. Agar dapat diwariskan kepada keturunan selanjutnya, mutasi harus terjadi pada sel-sel perkembangbiakan organisme tersebut: Perubahan acak yang terjadi pada sel biasa atau organ tubuh tidak dapat diwariskan ke keturunan berikutnya. Sebagai contoh, mata manusia yang berubah akibat pengaruh radiasi atau sebab lain, tidak akan diwariskan kepada keturunan berikutnya.

Semua penjelasan yang diberikan di atas menunjukkan bahwa seleksi alam dan mutasi tidak memiliki pengaruh evolusi sama sekali. Sejauh ini, belum ada contoh yang dapat diamati dari “evolusi” yang diperoleh dengan cara ini. Kadang kala, ahli biologi evolusi menyatakan bahwa “mereka tidak bisa mengamati pengaruh evolusi dari mekanisme seleksi alam dan mutasi karena mekanisme ini hanya terjadi dalam jangka waktu yang sangat panjang”. Namun, alasan ini, yang hanya merupakan cara mereka menghibur diri, tidaklah berdasar, dalam pengertian bahwa hal demikian tidak memiliki landasan ilmiah. Selama hidupnya, seorang ilmuwan bisa mengamati ribuan keturunan makhluk hidup dengan masa hidup singkat seperti lalat buah atau bakteri, dan tetap tidak mengamati adanya “evolusi”. Pierre-Paul Grasse menyatakan hal berikut tentang tidak berubahnya bakteri secara alamiah, sebuah kenyataan yang menyanggah evolusi:

 

 

 

 

 

 

 

 

Bakteri Escherichia coli tak berbeda dengan spesimen yang berumur satu miliar tahun. Tak terhitung mutasi selama waktu yang panjang ini tidak mendorong ke perubahan struktur.

 

 

 

 

Bakteri… adalah organisme yang, karena jumlah besar mereka, menghasilkan paling banyak mutan. [B]akteri… menunjukkan kesetiaan besar pada spesies mereka. Bakteri Escherichia coli, yang mutan-nya telah dipelajari dengan teliti, adalah contoh terbaik. Pembaca akan setuju bahwa sungguh mengejutkan, paling tidak, [bahwa mereka] yang ingin membuktikan evolusi dan mengungkap mekanismenya ternyata kemudian memilih bahan untuk dipelajari suatu makhluk yang tidak berubah selama miliaran tahun! Apa gunanya mutasi mereka yang tak kenal berhenti, jika mereka tidak berubah [atau menghasilkan perubahan secara evolusi]? Secara keseluruhan, mutasi pada bakteri dan virus hanyalah perubahan warisan seputar kedudukan pertengahan; berayun ke kanan, ke kiri, tetapi pada akhirnya tidak ada pengaruh evolusi. Kecoa, yang merupakan salah satu kelompok serangga paling maju, sedikit banyak tetap tidak berubah sejak jaman Permian, tetapi mereka telah mengalami mutasi sebanyak Drosophila, serangga jaman Tersier.

Singkatnya, mustahil bagi makhluk hidup mengalami evolusi, karena tidak terdapat mekanisme di alam yang bisa menyebabkan evolusi. Lebih jauh lagi, kesimpulan ini sesuai dengan bukti catatan fosil, yang tidak menunjukkan adanya proses evolusi, tetapi malah sebaliknya.

 

 

b. Akibat Mutasi pada Generasi Turunan

Sebagian besar mutasi bersifat merugikan karena mutasi dapat mengubah atau merusak posisi nukleotida-nukleotida yang menyusun DNA. Perubahan-perubahan akibat mutasi banyak menyebabkan kematian, cacat, dan abnormalitas, seperti yang dialami penduduk Hiroshima, Nagasaki, dan Chernobyl. Kadang-kadang mutasi pada sel kelamin dapat mengakibatkan timbulnya sifat baru yang menguntungkan. Bila sifat baru tersebut dapat beradaptasi dengan lingkungannya maka individu tersebut akan terus hidup dan mewariskan mutasi yang dialaminya kepada keturunannya.

Reaktor nuklir Chernobyl di Ukraina mengalami kebocoran pada tanggal 25 April 1989. Radiasi nuklir menyebar ke seluruh kawasan di Ukraina, tidak menutup kemungkinan meluas ke negara tetangga. Adanya kebocoran ini menyebabkan penduduk di daerah tersebut mengalami mutasi gen.

 

 

Korban Reaktor Nuklir Chernobyl

Manusia yang menderita kanker ganas

 

c. Variasi Fenotif dan Variasi yang Dihasilkan dari Mutasi Somatik

Variasi fenotif di dalam populasi dapat menyebabkan adanya seleksi (reproduksi differensial) diantara individu. Variasi ini belum tentu menunjukan adanya perbedaan-perbedan genetic. Jadi variasi yang dihasilkan oleh berbagai keadaan luar dalam waktu pertumbuhan atau disebabkan penyakit atau kecelakaan dapat dikenai oleh seleksi alam. Meskipun aksi seleksi alam pada segala macam variasi dapat mengubah komposisi suatu populasi di alam suatu waktu yang lama, tetapi hanyalah aksi dari variasi yang mencermikan perbedaan-perbedaan genetic yang mempunyai pengaruh jangka panjang.

Suatu variasi uang betul-betul fenotipik bukanlah suatu bahan baku (bahan dasar) bagi perubahan evolusi. Dapat dimengerti secara pengertian genetic, bahwa bentuk tubuh yang atletis dengan latihan-latihan keras, atau pembentukan daya pemikiran dengan belajar atau menjaga kesehatan dengan makanan yang seimbang atau pemeriksaan badan yang teratur, tidak dapat mengubah gen dalam sel kelamin. Gamet akan mengandung informasi genetic yang sama tanpa mengandung apakah seseorang telah mengalami latihan atau tidak. Ini berarti bahwa latihan, pendidikan, makanan, atau pengawasan medis tidak dapat mengubah pembawa sifat genetic. Jadi seleksi yang bekerja pada variasi yang dihasilkan seluruhnya dengan latihan, pendidikan, makanan, atau pengawasan medis tidak dapat mengubah atau menghasilkan evolusi secara biologis.

Terdapat suatu variasi genetik yang tidak berguna sebagai bahan baku evolusi. Hal ini adalah variasi yang disebabkan oleh mutasi somatic. Dapat terjadi bahwa suatu mutasi yang penting, terjadi pada sel ectoderm suatu embrio muda dari suatu binatang. Semua sel yang diturunkan dari sel yang mengalami mutasi dapat juga bersifat sel mutan. Hasil mutasi demikian akan menyebabkan perubahan besar-besaran pada system saraf, tetapi perubahan ini tidak dapat diturunkan kepada anak-anaknya sebab mutasi bukanlah terjadi pada sel kelamin. Sel ectoderm bukanlah sel yang akan menjadi gamet. Mutasi dari sel tidak dapat mengubah gen dari sel kelamin yang akan menghasilkan sel gamet. Jadi seleksi yang dihasilkan mutasi somatic tidak dapat menghasilkan suatu perubahan secara evolusi pada organism yang berbiak secara seksual.

Tanpa adanya data genetis yang cukup, beberapa ahli biologi pada abad yang lalu dan permulaan abad ini telah menolak pendirian, bahwa variasi fenotip atau mutasi somatic tidak dapat dipakai sebagai bahan baku untuk perubahan-perubahan evolusi. Hal-hal ini rupanya masih juga dimengerti oleh beberapa golongan bukan biologi pada waktu itu.

Selama ini yang telah kita singgung adalah teori evolusi oleh Darwin dan Wallace yang telah diubah dengan adanya penemuan-penemuan baru oleh para penyelidik yang kemudian menyusul. Teori di atas ternyata mempunyai saninga. Saingan dari teori Darwin dan Wallace adalah teori Lamarck. Menurut Lamarck dari pengikutnya, sifat-sifat somatik yang diperoleh individu selama waktu hidupnya dapat diturunkan kepada anak-anaknya. Jadi sifat-sifat dari setiap generasi akan ditentukan, paling tidak sebagian, oleh apa yang terjadi pada generasi sebelumnya, yakni dengan adanya perubahan yang oleh pengalaman, penggunaan, atau tidak bagian-bagian tubuh, dan juga kecelakaan. Jadi, perubahan evolusi ditafsirkan sebagai pengumpulan bertingkat –tingkat dari sifat-sifat yang diperoleh dalam jangka beberapa generasi. Contoh klasik adalah leher jerapah.

Mskipun hipotesis evolusi oleh sifat-sifat yang didapatnya yang diturunkan dianggap rendah oleh beberapa ahli biologi, pada mulanya hal ini dapat diterima secara logis. Tetapi hipotesis Lamarck tidak dapat menghadapi pembuktian riset secara ilmiah. Pada zaman Darwin mapun Lamarck, segala sesuatu mengenai genetic belum ada. Model dengan percobaanya belum muncul. Itulah sebabnya bagian-bagian tubuh yang berubah dapat diturunkan. Memang sejak zaman Yunani telah terdapat suatu anggapan bahwa butiran-butiran atau pangenes, dari semua bagian tubuh akan menjadi telur dan apa yang kita sebut sebagai spermatozoa.

Pandangan pangenesis dari Yunani inilah yang merupakan dasar genetis dari hipotesis Lamarck. Jika pelari jarak jauh mempunyai kaki yang tumbuh dengan baik, jadi pangenesis pada pelari dengan demikian dapat diubah. Jadi pelari membentuk spermatozoa, maka pangenesis dari otot kaki pada spermatozoanya akan berubah tipe yang sudah berubah dan akan menjadikan otot kaki anaknya berukuran besar. Satu hal yang menentang teori Lamarck adalah teori pangenesis dimana teori evolusi ini bergantung sepenuhnya. Kita mengetahui bahwa sel soma sama sekali tidak mempengaruhi genotif sel kelamin. Perubahan apapun pada sel soma tidak akan membawa perubahan-perubahan pada informasi keturunan di dalam gamet. Penurunan dari sifat-sifat didapat belum pernah dibuktikan. Dapatlah kita anggap bahwa teori Lamarck tidak lagi benar.

 

B. Kompleksitas Organisasi Seluler dan Gen

1. Data Penting Menyangkut Organisasi Biokimia Sel

Perubahan- perubahan kimiawi terus berlangsung di dalam setiap sel. Zat hidup yang terkandung di dalam sel itu terus terperbaharui dan sel-sel tersebut memperbaharui diri dengan melakukan pembagian di dalam organ-organnya, sebagian diantaranya seperti darah mempunyai kemampuan yang sangat menonjol untuk memperbaharui diri. Dalam konteks ini, sel-sel reproduktif  harus juga disebutkan, sebab sel ini menjamin lestarinya spesies itu.

Agar semua fungsi ini dapat terus berjalan, perubahan-perubahan pada zat dan energi beserta lingkungan sekelilingnya harus terus pula terjadi, hal ini mengakibatkan dihasilkannya makromolekul pada sel unsur-unsur kimia yang sederhana. Agar hal ini terjadi, bukan hanya kedua komponen yang akan bersatu itu harus ada, tapi harus ada pula apa yang dinamakan ‘katalis’, perantara yang mampu bertindak seminimal mungkin tapi mampu menggerakkan reaksi kimia dan tetap tak berubah begitu reaksi itu terjadi. Masing-masing katalis dapat menimbulkan reaksi yang diperlukan. Agar terproduksi protein pada zat hidup, yang merupakan hasil sintesis komponen-komponen yang lebih sederhana, diperlukan bantuan katalis-katalis yang dalam hal ini berupa enzim-enzim, dan masing-masing enzim mengandung zat unik yang dapat merangsang terjadinya sintesis suatu protein tertentu.

Pada gilirannya, enzim-enzim itu harus dihasilkan, dan setiap sel mempunyai suatu system untuk tujuan ini. Unsur dasar system ini berupa suatu makromolekul protein yang sangat kompleks, yang dinamakan asam desoksiribonukleat (DNA). Komponen-komponen kimia lainnya ‘bergantung’ pada substansi dasar ini, dan dengan tingkat kompleksitas yang beragam komponen-komponen tersebut memproduksi enzim-enzim ini yang akan merangsang terjadinya sintesis protein yang diperlukan bagi adanya kehidupan.

Pada organisme-organisme hidup yang paling sederhana, DNA berhubungan langsung dengan substansi sel, yaitu sitoplasma. Satu contoh mengenai hal ini adalah bakteri yang tidak mempunyai nukleus. Tapi pada sel-sel hewan dan tetumbuhan lain yang lebih  terorganisasi, DNA berada di dalam nucleus sel kromosom. Hal ini berarti bahwa DNA hanya terlibat secara tidak langsung dalam proses sintesasi zat hidup. DNA bertindak semata-mata sebagai penjaga seluruh data (yang jika disatukan menjadi satu paket informasi) yang dibutuhkan oleh reaksi-reaksi, dengan menggunakan perantara ‘kurir-kurir’, yang mengambil salinan-salinan darinya (DNA) dan membawa salinan-salinan tersebut ke bagian-bagian sitoplasma, seperti ribosom. Pesan-pesan itu dipancarkan melalui asam ribonukleat atau RNA.

Tapi pesan yang ditransfer dari nucleus ke sitoplasma-sitoplasma seluler via RNA tidak datang secara langsung. Kurir RNA dalam kenyataannya bertindak dengan bantuan RNA kedua, yaitu RNA transfer, RNA ini berdaya guna dalam menyebarkan pesan itu, setelah itu RNA kurir dihancurkan. Rincian ini menunjukkan kompleksitas system komunikasi, yang dalam kenyataannya lebih rumit daripada yang terlihat pada kerangka sederhana ini, sebab pesan itu sebenarnya disebarkan dalam bentuk kode.

Dengan demikian kita mulai mendapatkan suatu gagasan antar hubungan tak terhitung yang ada didalam sel, lengkap dengan organ-organ perantaranya yang memainkan suatu peran dalam pembaruan zat hidup. Hal penting lainnya adalah bahwa komando pusat memberikan perintah-perintahnya kepada kurir-kurir khusus agar menggerakkan sejumlah besar sintesis kimiawi yang mensyaratkan suatu ragam tak terbatas tugas yang harus dijalankan. Karena itu kita melihat adanya suatu system yang terorganisasi dengan ukuran fungsi yang besar, meskipun volumenya benar-benar kecil. System tersebut merupakan suatu system yang menentukan adanya seluruh aktivitas sel, termasuk reproduksinya, yaitu bagaimana sel tersebut memainkan peranannya dalam hal keturunan dan selanjutnya dalam evolusi.

Setiap sel mengandung rangkaian DNA. Dalam hal bakteri, yang dimensi-dimensinya berukuran 1/1.000 milimiter, DNA membentuk sebuah pita yang panjangnya bermilimeter-milimeter. Pita itu karenanya sangat pendek dalam hal ini, meskipun pada Escherichia Coli, yang diperkirakan antara 5.000 kali lebih panjang daripada dimensi maksimum bakteri tersebut. Panjang satu milimiter itu terhitung sangat besar bila hal itu diberlakukan pada molekul, dan diatas satu milimiter pita DNA ditempatkan sejumlah komponen kimia kompleks yang tak terhingga, dan masing-masing komponen-komponen tersebut menentukan setiap fungsi bakteri. Dalam hal ini manusia, untuk satu sel saja, pita DNA cukup panjang bila dihitung dalam ukuran meter. Sedangkan untuk panjang keseluruhan pita DNA yang terdapat di dalam diri seorang manusia adalah lebih besar daripada jarak bumi matahari (P. Kourilsky).

Pita-pita DNA yang untuk satu sel ukuran panjangnya lebih dari satu meter, merupakan penjaga cirri-ciri khas keturunan yang diturunkan kepada kita oleh oranng tua kita. Pita-pita DNA tersebut menyampaikan semua informasi yang dapat dimanfaatkan oleh setiap sel didalam tubuh kita. Sementara kehidupan embrio berkembang, sel-sel mengalami pembedaan, mendapatkan fungsi-fungsi khusus dan membentuk seluruh organ kita sesuai dengan perintah-perintah yang dikeluarkan oleh gen-gen. Seluruh system ini diperkecil ukurannya sampai sekecil-kecilnya, sebuah pita DNA yang panjangnya lebih dari satu meter itu tak terhingga tipisnya, dan ketipisannya itu diukur dalam angstrom (sepersepuluh juta milimiter).

DNA mempunyai struktur spiral dalam bentuk heliks ganda, satu pitadibelitkan ke sekeliling pita lain. Para ahli di bidang biologi molekuler telah memperbandingkannya dengan sebuah foto yang disertai negatifnya. Bila sebuah replika pita itu dihasilkan pada saat terjadinya pembagian sel, maka kedua rantai itu terpisah dan masing-masing rantai berfungsi sebagai semacam cetakan untuk menghasilkan sebuah rantai pelengkap, persis seperti negatif sebuah foto yang dapat menghasilkan cetakan positif foto tersebut dan begitu pula sebaliknya. Dengan demikian kita dapat memiliki dua salinan yang identik dengan aslinya, asalkan tidak terjadi kesalahan pada waktu pemrosesan.

Kemampuan system ini untuk berproduksi dan perbedaan hasil akhirnya sangat besar. Bakteri seperti Escherichia Coli dapat mensintesis sekitar 3.000 jenis protein yang berbeda-beda. Lebih dari separuhnya telah dapat di identifikasikan. Sel-sel manusia mengandung DNA seribu kali lebih banyak daripada  Escherichia Coli. Dengan demikian kita dapat melihat besarnya kemampuan sel-sel didalam organism-organisme yang lebih tinggi untuk menghasilkan substansi-substansi kehidupan yang sangat beragam. Daftar protein yang dapat disintesiskan dengan cara ini tak lengkap.  Adalah penting untuk dicatat cara fantastis tumbuhnya DNA menjadi semakin panjang ketika melampui tahap sel-sel organisme primitif ke organisme yang lebih tinggi. Pada dasarnya skala adalah satu milimiter panjangnya, tapi ketika menjangkau manusia, DNA tersebut menjadi lebih dari  satu meter panjangnya (P. Kourilsky). Nanti kita akan melihat bahwa kita bisa berbicara mengenai adanya suatu peningkatan gen-gen yang berkaitan dengan tumbuhnya kompleksitas fungsi-fungsi dan struktur semua makhluk hidup. Daftar gen-gen itu lebih lengkap daripada daftar protein-protein seluler. Implikasi yang menyertai pengamatan-pengamatan ini adalah bahwa evolusi harus dikaitkan secara erat dengan perolehan gen-gen baru, yang selanjutnya menjadi elemen esensialnya. Kuantitas informasi yang tercatat secara lambat laun terus meningkat sejalan dengan berlalunya waktu.

Informasi diatas yang menyangkut panjang pita yang diatas pita tersebut gen-gen ditempatkan tampaknya lebih berarti dari pada berat DNA yang terkandung didalam setiap sel. Dalam buku P.P Grasse, ‘L’ Evolution du vivant’ (Evolusi Organisme Hidup), angka-angka diberikan menyangkut berat DNA yang terkandung didalam sel-sel makhluk-makhluk hidup yang berada pada tingkat yang lebih kurang tinggi dalam skala struktur. Berat DNA sangat beragam dari satu spesies ke spesies lainnya, tanpa adanya kaitan yang jelas dengan tingkat evolusi. Hal ini tampaknya tidak bertentangan dengan apa yang telah dinyatakan diatas, sebab tidak hanya ada satu DNA melainkan beberapa DNA yang berat molekulnya naik-turun sesuai dengan sumber yang diambilnya (thymus, wheatgerm), bakteri dan sebagainya yang proporsinya berkisar dari satu sampai beberapa ratus (M. Privat de Garillhe). Kompleksitas kimianya bergantung pada jumlah unsur yang disimpan oleh pita itu. Misalnya, DNA Basil Pelembut mempunyai massa molekul paling sedikit 230 juta, sementara DNA virus herpes mempunyai massa 100 juta, dan massa sehelai DNA bacteriophage adalah 1.600.000 (M. Privat de Garilhe). Untuk sebuah wujud sederhana, seperti air yang terdiri atas dua atom hydrogen dan satu atom oksigen, berat molekulnya adalah 18, angka yang menunjukkan tingkat kompleksitas kimia. Suatu fakta yang perlu diancamkan.

Penjelasan diatas mengenai DNA mengandung syarat, karena jelas tidak mungkin menggunakan suatu timbangan biasa untuk menimbang DNA (skala pengukuran dalam hal ini dihitung dalam sepermiliyar milligram). Perkiraan –perkiraan ini didasarkan pada pengetahuan kita mengenai DNA yang paling sederhana   (paling sederhana dari sudut pandang kimia), dan dikoreksi melalui perhitungan-perhitungan yang diambil dari pengukuran panjang molekul-molekul dengan bantuan sebuah mikroskop electron. Angka-angka itu dapat diubah, dan begitu juga kesimpulan-kesimpulan yang kita ambil dari angka-angka tersebut. Pengamatan- pengamatan ini dikemukakan semata-mata untuk memberikan suatu gagasan mengenai kompleksitas organisasi yang sedang kita bahas ini.

2. Kromosom

Dalam memerikan kompleks biokimia luar biasa yang kita namakan sel, sejauh ini kami baru menyebutkan peranan yang di mainkan oleh DNA untuk mempertahankan cirri-ciri khas keturunan, di antara banyak fungsinya yang lain.  Sebagaimana telah kita lihat, dalam hal makhluk-makhluk bersel tunggal yang paling primitif, seperti bakteri, hanya ada satu pita DNA. Tidak ada nucleus. Tapi dalam organisme-organisme seluler yang mempunyai struktur yang lebih rumit, nucleus itu menampakkan diri, di situ kromosom terkonsentrasi. Dalam kromosom-kromosom  itulah kita temukan gen-gen. Tapi sebelum melangkah lebih jauh dalam menganalisis peranan yang dimainkan oleh gen-gen (terutama dalam evolusi), perlu kita segarkan kembali ingatan kita tentang gagasan-gagasan tertentu yang menyangkut kromosom.

Nama kromosom itu sendiri merujuk langsung pada salah satu ciri khas kromosom tersebut. Alas an Waldeyer memberikan nama ini pada 1888 adalah bahwa dia telah melihat betapa unsur-unsur yang berbeda dalam nucleus itu dapat ternoda oleh warna-warna pada saat sel itu mulai membagi diri. Dalam organisme-organisme yang memiliki suatu system reproduktif seksual, kromosom-kromosom itu ditata dalam pasangan-pasangan yang identik. Penyebaran ini sangat penting sebab system reproduktif seksual tersebut mempertahankan jumlah kromosom selalu sama dalam spesies yang sa,ma selama dalam proses reproduktif. Ketika mencapai kematangan, tiap-tiap sel entah spermatozoa atau ovule hanya mempunyai separuh kromosom spesies itu. Segera setelah kedua sel reproduktif itu menyatu, jumlah kromosom itu ditetapkan kembali.(46 dalam diri manusia).

Salah satu kromosom itu mempunyai peranan dalam menentukan jenis kelamin, dan kromosom ini dimiliki oleh pria. Berikut ini adalah gambaran secara secara garis besar cara kerja proses situ: wanita mempunyai sepasang kromosom yang ditandakan dengan  XX, pria mempunyai sepasang kromosom lain yang ditandakan dengan XY. Karena jumlah kromosom berkurang (meiosis) ketika terjadi pembentukan sel-sel reproduktif, maka spermatozoa  terbagi menjadi dua kelompok. Satu kelompok menjgandung X dan yang lainnya Y. Jika ovule X dibuahi spermatozoa yang membawa sebuah X, maka wanitalah (XX) yang akan terbentuk. Jika ovule tersebut dibuahi spermatozoa Y hasilnya adalah pria.

Penyebaran faktor-faktor X dan Y dalam spermatozoa hampir persis sama, hal ini menyebabkan jumlah anak perempuan dan anak laki-laki yang lahir praktis sama pula. Jika spermatozoa  seorang ayah dimasa mendatang berhasil dipisahkan menjadi dua kelompok dan wanita menjalani inseminasi buatan dengan salah satu kelompok itu, maka sepasang suami istri dapat menentukan apakah mereka ingin anak laki-laki atau perempuan. Hal ini sama sekali bukan merupakan suatu visi utopis, sebab manipulasi atas spermatozoa manusia sekarang ini sudah cukup maju sehingga sebuah proyek semacam ini dapat diwujudkan dengan konsekuensi-konsekuensi pasti praktek semacam ini, sebagaimana kita bayangkan sendiri. Tapi untunglah, reproduksi manusia selama ini tetap berlangsung tanpa adanya factor-faktor seperti tersebut diatas yang dapat mengubah penyebaran jenis kelamin keseimbangan itu telah dipertahankan oleh alam.

Kromosom terdiri atas DNA, RNA, dan berbagai protein. DNA membawa gen-gen semuanya tidak akan terperbaharui lain dengan komponen-komponen sel lainnya. DNA hanya dapat terperbaharui jika sel membagi diri. Kuantitas RNA beragam dari satu sel ke sel yang lainnya dan dari satu saat ke saat yang lainnya. Dalam memainkan peranannya sebgai kurir yang membawa informasi yang terkandung di dalam gen-gen, RNA terus menerus terperbaharui di dalam kromosom, menjadi saksi bagi aktifitas-aktifitas gen-gen dan tak terproduksi lagi ketika gen-gen tidak punya pesan lagi yang harus disampaikan.

Ketidakteraturan dalam kromosom-kromosom melahirkan konsekuensi-konsekuensi yang benar-benar serius, keguguran spontan (30% kasus-kasus semacam itu dikarenakan tak berhasilmembagi secara teratur kromosom) dan berbagai penyakit muncul dengan tingkat keseringan yang berbeda, yang paling terkenal diantaranya adalah Mongoloid (trisomy 21, suatu penyakit yang menghinggapi sekitar satu dari 700 anak ). Perubahan-perubahan semacam ini bisa mengakibatkan kematian janin dan bisa pula menyebabkan lahirnya anak-anak yang menderita cacat berat. Tapi diatas semua ini, organisme-organisme hidup dapat berubah selama masa reproduksi, bahkan dalam kerangka suatu pola reproduktif yang cenderung sesuai contoh yang diberikan oleh nenek moyang individu itu. Eksperimen-eksperimen klasik yang dilakukan oleh seorang pendeta Cekoslokavia Gregor Mendel pada  pertengahan abad kesembilan belas (yang tidak dikenal orang banyak sampai meninggalnya) memberikan dukungan teoritis pada riset yang dilaksanakan pada awal abad kedua puluh. Semuanya membuat kita bisa menemukan gen-gen dan tempat gen-gen tersebut didalam kromosom gen.

Sekarang ini telah menjadi fakta yang tak terelakkan bahwa gen-gen merupakan bagian- bagian molekul-molekul DNA. Melalui tindakan DNA , yakni suatu proses yang telah dikemukakan secara garis besar diatas, gen-gen memperbaharui molekul-molekul proteinik yang merupakan zat hidup sel. Aktifitas biokimia ini mengubah sifat – sifat molekul-molekul dalam sel, dan dengan demikian mempengaruhi cara berfungsinya sel itu dan juga produksi struktur-struktur tertentu yang memungkinkan sel-sel tersebut memainkan peranan yang jelas. Dari sudut pandang ini, kita kita dapat mengatakan bahwa gen merupakan bagian paling kecil molekul DNA yang mampu melahirkan suatu cirri khas yang permanent.

Sementara gagasan dasar tersebut diakui bahwa semakin kompeks struktur seekor hewan, semakinbesar kemungkinannya untuk memiliki kuantitas gen yang lebih besar, para ahli genetika tidak sepakat mengeanai jumlah gen yang terlibat. Ketika mereka mengarah  pada hal mutasi, gen menjadi obyek penyelidikan. Dalam hal drosophila , lalat yang dari sudut pandang ini dijadikan sebagai bahan penyelidikan laboratorium, jumlah gen sangat besar sekitar 5.000 sampai  15.000, Berapa banyak gen yang terdapat di dalam tubuh manusia? Tak seorangpun benar-benar tahu. Disamping itu, hubungan antara jumlah ciri dan kuantitas gen sama sekali tidak jeals. Sebagian pengamat menyatakan bahwa suatu enzim spesifik ada hubungannya dengan setiap gen, tapi satu enzim sebenarnya dapat melahirkan beberapa ciri.

 

 

 

 

 

 

 

 

 

 

 

Kromosom. (1) Kromatid. Salah satu dari dua bagian identik kromosom yang terbentuk setelah fase S pada pembelahan sel. (2) Sentromer. Tempat persambungan kedua kromatid, dan tempat melekatnya mikrotubulus. (3) Lengan pendek (4) Lengan panjang.

 

 

 

 

 

3. Gen

Gen adalah bahan genetik yang terkait dengan sifat tertentu.

 

 

 

 

 

 

 

 

 

 

 

 

 

Sebagai bahan genetik tentu saja gen diwariskan dari satu individu ke individu lainnya. Gen memiliki bentuk-bentuk alternatif yang dinamakan alel. Ekspresi dari alel dapat serupa, tetapi orang lebih sering menggunakan istilah alel untuk ekspresi gen yang secara fenotipik berbeda.

Gen bertanggung jawab atas fungsi-fungsi yang berbeda. Dari sini kami  menyimpulkan bahwa fungsi-fungsi purba yang mencirikan suatu phylum bergantung pada gen-gen tertentu  yang telah bekerja sebagaimana adanya sejak awal mula lahirnya phylum tersebut. Tapi sejalan dengan kemajuan evolusi, dan kelas ordo, famili , genus dan spesiez saling muncul, gen memperluas campur tangannya secara turun-temurun dan secara khusus pada setiap ciri khas utama. Campur tangan itu terjadi pada periode yang lebih mutakhir dan terkoordinasi dengan sempurna secara berurutan dari campur tangan itulah makhluk-makhluk hidup terbentuk.

Para ahli zoology mempunyai banyak pertanyaan yang perlu diajukan dan pertanyaan tersebut yakni mengenai subyek ini. Dalam L’ ‘Evolution du vivant’ (Evolusi Organisme Hidup) , P.P. Grasse Mengetengahkan  beberapa soal yang sangat penting berikut ini:

–                              DNA bukan hanya ada di dalam kromosom, tapi juga aktif dalam mitochondriaae dan unsure-unsur seluler lainnya. Tapi apakah  peranan DNA ekstra nuklir itu?

–                              Hormon berperan sebagai penggerak aktifitas genetic. Suatu arus tetap informasi mengalir dari nuklir DNA, sementara arus lain membanjir kearahnya, dan dengan demikian menggerakkannya untuk bertindak. Komunikasi timbale balik antara sitoplasma dan kromosom dan sebaliknya terus berlangsung. (P.P. Grasse). Dia selanjutnya menyitir eksperimen-eksperimen yang membuktikan adanya pengaruh sitoplasma atas kromosom. Sebagaimana telah kita lihat diatas, dalam kritik P.P. Grasse atas teori J. Monod (menurut J. Monod informasi hanya dapat mengalir kearah DNA ), dogma yang menyatakan bahwa informasi mengalir satu arah telah tersanggah sepenuhnya sekarang ini.

Semua pengamatan yang dikutip diatas mendorong kita beranggapan bahwa lingkungan mempengaruhi gen, sehingga terubahlah struktur-struktur gen tersebut. P.P. Grasse memberikan contoh-contoh yangh diambil dari dunia tetumbuhan dan menyimpulkan bahwa: “ Aturan yang menyatakan bahwa sebuah gen selalu menetapkan cirri khas yang sama kecuali jika gen tersebut berubah adalah terlalu kaku” . Begitu pula gen memancarkan informasi yang sama , tapi substansi-substansi yang menjawab pesan-pesanya bereaksi dengan cara-cara yang berlainan yang bergantung pada keadaanya.” Seluruh uraian ini menunjukkan kompleksitas fantastis system itu dan makna dari banyak interaksi. Kita telah jauh meninggalkan yang bebas, buta tapi mutlak yang di kemukakan dalam teori yang berusaha menjelaskan bahwa segala suatu terjadi secara kebetulan.

 

C. Gen: Perananya dalam Evolusi dan Proses-proses Lain

1. Peranan Gen dalam Evolusi: Mutasi

Dengan merujuk pada data yang dikemukakan diatas, dapatkah kita mengadakan pendekatan terhadap peranan gen  dalam evolusi? Secara sederhana, ada dua cara untuk mengatasi masalah tersebut dan dua cara untuk mengatasi masalah tersebut benar-benar berlainan. Cara pertama adalah cara yang digunakan oleh para ahli genetika. Cara ini di dasarkan pada pengamatan atas fakta-fakta masa kini, misalnya: penghitungan variasi-variasi genetic dalam populasi-populasi yang ada sekarang, dari situ lahir teori-teori penjelas. Cara kedua diguanakan oleh para ahli zoology dan paleonotologi. Disini termasuk penyelidikan atas materi masa lampau, hal ini tidakl dianggap penting oleh kelompok pertama. Dalam survey berikut ini, kita akan melihat bahwa pertentangan kedua metode ini mendatangkan pertentangan pula pada konsep-konsep evolusi yang dikemukakan oleh kedua kelompok tersebut.

Mengingat apa yang telah kami nyatakan tentang kompleksitas tas tak terhingga struktur kimia gen-gen, dan mengingat cara salinan-salinan itu di hasilkan selama pembagian sel, maka sangatlah mungkin untuk beranggapan bahwa perubahan paling kecil dalam struktur molekul DNA dapat mempengaruhi sel tersebut dan semua yang dihasilkan olehnya. Inilah yang sesungguhnya terjadi ketika modifikasi mempengaruhi sel wanita dan sel pria yang bertanggung jawab atas reproduksi (sel-sel benih): hal ini menyebabkan timbulnya perubahan pada kode genetik. Dalam keadaan-keadaan semacam itu, sebuah ciri khas baru muncul pada diri individu yang diturunkan ke keturunannya. Inilah yang dinamakan mutasi, dan fenomena ini dikenal sebagai mutagenesis. Hal ini mempengaruhi hewan dan tetumbuhan, bentuk-bentuk kehidupan yang paling primitif dan juga bentuk-bentuk kehidupan dengan organisasi yang lebih kompleks (yaitu bentuk kehidupan yang mempunyai nukleus). Dalam hal bentuk-bentuk yang primitif, mutasi mempengaruhi DNA yang terdapat dalam sitoplasma (contohnya bakteri), dalam hal bentuk-bentuk yang lebih kompleks, mutasi mempengaruhi gen-gen yang yang disimpan oleh DNA dalam nucleus. Mengapa mutasi dianggap terjadi secara kebetulan, karena hal itu sama sekali tak dapat diramalkan baik mengenai saat terjadinya maupun tempat mutasi tersebut mempengaruhi molekul DNA.

Pengaruh mutasi atas individu begitu besar sehingga bentuk kehidupan tidak dapat bertahan dalam menghadapi mutagenesis (dalam hal tersebut mutasi dikatakan mempengaruhi gen-gen yang mematikan) dilain pihak, fenomena ini bisa mendorong timbulnya modifikasi- modifikasi kecil yang bisa mempengaruhi generasi- generasi berikutnya.

Dengan cara ini, pada pita DNA sel-sel manusia, yang panjangnya lebih dari satu meter, perubahan-perubahan genetic yang sangat kecil muncul dan memberikan pada individu itu cirri-ciri khas yang membuat individu tersebut berbeda dengan individu lainnya. Perubahan-perubahan inilah yang menjadikannya kurang lebih serupa dengan orang tua atau kakek neneknya, dan perubahan ini bahkan menurunkan pada generasi-generasi sesudahnya ciri-ciri khas keluarga, seperti hidung khas para raja Bourbon dari Prancis. Terkadang, fenomena yang sangat serius bisa terjadi, seperti penyakit yang berkaitan dengan jenis kelamin, yang mengenai kromosom X wanita. Kasus dalam hal ini adalah hemophilia, hal ini terutama mengenai pria, meskipun dia diturunkan melalui wanita yang kebal penyakit tersebut. Para anak-cucu pria Ratu Victoria dari Inggris menderita penyakit ini. Meski terdapat mutasi patologis yang mendasar ini, hamper semua mutasi kecil cenderung terdesak.

Melihat keterangan diatas, masalah evolusi secara selintas mungkin tampak sangat sederhana. Fenomena mutagenesis kelihatannya dapat menjelaskan semua variasi keturunan selama beberapa generasi, yang menyebabkan terjadinya evolusi makhluk-makhluk hidup. Ada sejumlah ahli genetika yang mendukung teori ini. Tapi yang sulit diterima adalah bahwa untuk membenarkan teori ini, maka mutasi-mutasi tersebut harus terjadi sedemikian berurutan dan pada saat yang tepat sehingga terjadi penambahan atau pengurangan organ-organ, atau mendorong timbulnya suatu perubahan pada fungsi-fungsi tertentu. Tapi tampak jelas sekali bahwa mutasi-mutasi ini pada hakikatnya terjadi secara tidak teratur. Pada titik ini, para ahli genetika, yang mengetengahkan hipotesis yang didasarkan atas penghitungan-penghitungan populasi masa kini dan yang menyatakan telah mendapatkan jawaban dalam hal ini, memisahkan diri dari mereka yang menyelidiki peristiwa-peristiwa masa lampau. Pihak yang menyelidiki peristiwa masa lampau ini sangat mempercayai penemuan-penemuan pihak pertama dalam hal sifat-sifat gen, tapi mereka menyatakan telah melihat banyak kelemahan dalam teori-teori yang berusaha menjelaskan inskripsi pada pita DNA dari data baru yang akan diturunkan sejalan dengan  berlalunya waktu. Kelompok kedua tampaknya benar-benar lebih pasti dibandingkan dengan pihak pertama dalam hal nilai demonstrative fakta-fakta tertentu yang telah terbukti menyangkut gen.

Tapi para ahli genetika harus terlebih dahulu menggambarkan jumlah yang mungkin dari mutasi-mutasi spontan. Sejauh ini pandangan tersebut belum ada. Untuk satu gen selama masa jeda yang memisahkan dua generasi, jumlah perkiraannya adalah 1/10.000 (P.L’ Heritier). Terdapat juga sejumlah mutasi netral bila dipandang dari sudut pandang evolusi. Mutasi tersebut merupakan sumber cirri-ciri khas individu dan tidak menyimpang dari kerangka spesies. Dengan demikianlah individu tersebut mempertahankan sifat-sifat spesies. Kita berada jauh sekali dari bermiliyar-miliyar variasi bermanfaat yang disebutkan oleh para ahli genetika tertentu. Yang dinamakan variasi bermanfaat itu jauh lebih sedikit jumlahnya, suatu fakta yang melahirkan gagasan yang lebih problematik mengenai mutasi yang baik yang terjadi pada saat yang tepat. (P.P Grasse). Kita hendaknya tidak mengacaukan proses mutasi kebetulan, yang menyebabkan timbulnya ciri-ciri khas pribadi individu, dengan peran aktif yang dimainkan oleh mutasi-mutasi itu sebagai kekuatan utama dibalik proses evolusi.

Gagasa mengenai evolusi menandakan transformasi-transformasi progresif dalam skala yang sangat besar. Misalnya, evolusi serangga mempengaruhi seluruh organism serangga itu dengan sangat ketat. Transformasi organ-organ itu berlangsung secara perlahan-perlahan tapi mantap dengan melalui tahap-tahap yang berurutan misalnya, hewan menyusui memerlukan waktu 80 juta tahan untuk meninggalkan cirri-ciri reptilianya dan dalam suatu urutan yang tidak sesuai dengan munculnya mutasi-mutasi yang terjadi secara tidak teratur.

Selain fakta-fakta diatas, yang berasal dari penyelidikan paleontology, riset genetis juga member kita data organism-organisme paling primitive yang hidup sekarang ini. Organism-organisme tersebut adalah bakteri, suatu subyek yang mudah ditelaah sebab bakteri bereproduksi dalam jangka waktu dua puluh menit. Dengan demikian menjadi mungkinlah bagi kita untuk mengikuti gerak maju beribu-ribu generasi, yang diantaranya didapat mutasi-mutasi pada molekul DNA. Tapi apakah hasil praktis mutasi-mutasi ini? Variasi-variasi skala kecil. Spesies itu tetap sama, sebagaimana telah terjadi selama berates-ratus juta tahun! Sedangkan mengenai transisi dari bakteri atau ganggang biru ke organisme-organisme yang mempunyai struktur sel dengan sebuah nucleus, suatu peristiwa yang mungkin telah terjadi satu milyar tahun yang lalu, adalah masuk akal jika kita beranggapan bahwa kondisi-kondisi lingkungan saat itu sangat berbeda dengan kondisi-kondisi lingkungan sekarang. Dikarenakan hal ini, sulitlah untuk membayangkan bahwa mutasi-mutasi yang terjadi pada bakteri masa kini persis sama dengan mutasi-mutasi yang terjadi dimasa lampau.

Misteri yang sama melingkupi tetumbuhan dan hewan-hewan yang tidak mengalami perkembangan sama sekali selama berjuta-juta tahun, meskipun mungkin telah menjalani mutasi-mutasi secara kebetulan. Dalam konteks ini, para ahli zoology mengemukakan kasus kecoa biasa yang sepanjang yang dapat mereka kemukakan, hampir tidak mengalami perkembangan sama sekali sejak era awal. Hal yang sama juga terjadi pada spesies ‘panchronic’ dinamakan begitu karena spesies ini berhasil mempertahankan hidup selama berabad-abad tanpa mengalami perubahan sedikitpun, seperti opossum, limuli tertentu (serangga laut dengan insang, yang biasanya dinamakan raja kepiting) dan berbagai tetumbuhan yang tak satupun terpengaruh oleh mutasi.

Sanggahan-sanggahan telah diajukan menyangkut soal diatas, karena para pengamat tertentu menyatakan bahwa spesies panchronic tetap tak berubah karena spesies tersebut hidup didalam lingkungan terbatas disitu kondisinya tidak banyak mengalami perubahan (misalnya, hewan-hewan yang hidup di gua atau di dasar lautan). Sementara hal ini mungkin benar, menyangkut spesies tertentu yang hidup didalam lingkungan semacam itu, hal tersebut tidaklah mudah diterima oleh setiap orang yang telah melakukan banyak perjalanan dan yang telah melihat kecoa-kecoa yang ada diberbagai bagian dunia ini.

 

  1. 2. Gen-gen dan Regenerasi

Contoh –contoh regenerasi menunjukkan secara jelas kemampuan luar biasa yang dimiliki oleh gen-gen untuk mendorong pertumbuhan jaringan baru setelah terjadinya amputasi-amputasi besar dan bahkan setelah terbaginya sebuah badan menjadi beberapa bagian, sebagaimana kita temukan pada spesies-spesies tertentu.

Tapi dalam pembahasan ini mengenai regenerasi, kami tidak akan merinci masalah kemampuan mahabesar organ-organ tertentu hewan-hewan menyusui (termasuk manusia) untuk berkembang setelah terjadinya amputasi. Hati hanyalah satu contoh sebuah organ yang dapat tumbuh lagi secara sempurna diantara banyak contoh lainnya, dan begitu juga usus. Dalam hal usus, lendir dihasilkan tanpa kesulitan untuk memastikan kesembuhan sebuah luka setelah kedua bagian itu disambungkan.

Yang menjadi pemikiran kami disini adalah pertumbuhan kembali yang melebihi jangkauan organ-organ itu. Dalam hal hewan-hewan tertentu, hal itu mempengaruhi bagian-bagian badan tertentu yang jika dipotong merangsang perkembangan baru bagian yang dihilangkan itu. Triton dapat dijadikan contoh disini: seperti katak-katak lainnya, ketika moncong, kepala, ekor, tangan, kaki atau bahkan matanya dihilangkan, bagian yang dihilangkan itu dapat sepenuhnya tumbuh lagi. Cacing tanah adalah contoh terkenal lainnya. Bagian depan cacing yang berupa kepala akan dapat tumbuh lagi asalkan tidak dipotong pada tempat yang terlalu jauh dari bagian tersebut, dan begitu pula bagian belakangnya akan tumbuh lagi asalkan cacing itu tidak dipotong pada tempat yang terlalu kedepan.

Contoh- contoh regenerasi total terdapat pada hewan-hewan tak bertulang belakang. Dalam kasus-kasus tertentu, hewan itu tumbuh kembali sepenuhnya dari satu bagian badan, bagian manapun. Pada hewan-hewan yang skala organisasinya lebih rendah, ada banyak contoh umum, seperti hydra air. Proses regenerasi menyusun kembali sejumlah hydra baru yang sama dengan jumlah bagian tempat hydra tersebut dipotong. Hewan ini juga memperbaharui jaringan-jaringannya secara spontan sepanjang perjalanan hidupnya. Tapi penyusunan kembali paling spektakuler terjadi pada tubuh-tubuh cacing planaria dan nemertia. Keduanya adalah cacing-cacing kempis yang mempunyai alat pencerna. Planaria, yang panjangnya anata 1-2 cm, dapat dipotong menjadi tiga bagian dengan dua potongan, misalnya : sepuluh hari kemudian, tiga ekor cacing akan muncul. Sebuah kuncup regenerative tumbuh pada bagian tempat dilakukan pemotongan dan pada kuncup itu, otot jaringan pencerna dan kelenjar ,urat dan sebagainya mulai muncul yang secara lambat laun menggantikan semua organ yang hilang pada setiap tiga bagian itu, termasuk otak dan mata.

Yang lebih hebat lagi adalah nemertia, nemertia merupakan varitas cacing lain yang ukuran panjangnya berkisar antara 20 cm- 1m. Seperti planaria, nemertia, ini juga melakukan regenerasi tapi mempunyai kemampuan tambahan untuk memotong diri sendiri menjadi bagian-bagian (autotomy), suatu kemampuan yang jauh lebih tinggi dibandingkan dengan kemampuan spesies lain. Autotomi merupakan suatu mekanisme pertahanan diri yang digunakan oleh seekor hewan yang sedang menghadapi serangan. Dalam kejadian-kejadian begitu, hewan tersebut memisahkan diri dari bagian tubuhnya yang telah tertangkap oleh penyerangnya (kadal meninggalkan ekornya, kepiting membuat sepitnya ) dan bagian itu akan tumbuh lagi nantinya.  Tapi nemertia melangkah lebih jauh lagi. Seperti ditulis P.P Grasse dalam karyanya précis de biologie animale (Buku Pegangan Mengenai Biologi Hewan), ketika menghadapi serangan hebat, baik yang bersifat kimiawi maupun mekanis, nemertia secara spontan memotong dirinya sendiri menjadi bagian-bagian yang nantinya akan membentuk individu tersendiri. Lebih jauh bila sama sekali tidak dapat menemukan makanan, maka nemertiamampu bertahan hidup melalui suatu proses involusi yang luar biasa. Sel –selnya saling menelan, dan organisme itu lambat laun mengkerut. Dawydoff  telah berhasil mendapatkan contoh-contoh Lineus Lacteus yang panjangnya 100 µ (sepersepuluh milimeter) dan terdiri atas 12 sel, P.P Grasse tidak menyatakan apakah jumlah sel yang sangat kecil dan masih tinggal itu mampu menyusun kembali tubuh seekor cacing yang sempurna, tapi penampilan hewan-hewan ini tetaplah mengagumkan.

Namun begitu, sementara anatomi cacing menunjukkan proses-proses regenerasi yang digerakkan oleh sisa-sisa sel-sel berlainan yang terkandung di dalam bagian depan dari potongan itu, adalah mustahil untuk membicarakan regenerasi sisa-sisa yang sama ini bila sisa-sisa yang sama tersebut terletak pada bagian belakang (misalnya diujung ekor). Mesti kita akui bahwa sepanjang tubuh hewan itu, dari satu ujung ke ujung yang lainnya, tersebarlah berbagi sel yang mempunyai fungsi regenerasi khusus. Sel –sel semacam itu dinamakan sel-sel neoblastik, dan sel-sel tersebut merupakan semacam sumber cadangan bagi sel-sel embrionik yang melalui suatu proses diferensiasi, menyusun kembali semua jaringan dan organ.

Betapa sangat mengagumkannya organisasi ini! Sulitlah untuk membayangkan banyaknya informasi yang harus dicatat pada molekul DNA yang terdapat di dalam gen-gen agar sampai pada hasil semacam itu tepat pada waktunya, dengan kata lain, pada saat keadaan-keadaan itu mendorong berjalannya mekanisme yang semestinya (seperti pemotongan cacing menjadi beberapa bagian yang berbeda-beda). Semua kejadian ini berlangsung dalam urutan yang sempurna, dan lihat sepuluh hari kemudian planaria itu telah menyusun kembali tubuh-tubuhnya menjadi normal lagi, Autotomy nemertia merupakan keajaiban lain organisasi ini, karena hewan –hewan ini dapat membagi diri-sendiri menjadi bagian-bagian di bawah pengaruh stimulus tertentu. Gen –gen yang mengatur semua tindakan yang terkoordinasi secara sempurna tersebut (hal ini tidak cukup diulang-ulang terus) di dalam sel dan yang menggerakkan proses penyusunan kembali, adalah gen-gen yang dalam kondisi normal tidak aktif. Fenomena semacam ini melahirkan masalah-masalah genetika yang sangat rumit, hal ini menimbulkan peranyaan mengenai eksistensi normal gen-gen inoperative atau gen-gen adaptif dengan kata lain gen-gen yang memungkinkan terjadinya adaptasi.

 

  1. 3. Gen-gen dan Perilaku Hewan

Perilaku hewan-hewan yang kita kenal dan penampilan spektakuler kemampuan-kemampuan tertentu yang sering ditunjukkan oleh hewan-hewan lainnya telah mendorong banyak orang untuk menganggap bahwa hewan-hewan ini memiliki kemampuan berpikir yang jauh melampui kemampuan-kemampuan sesungguhnya . Banyak hewan-hewan yang memberikan kesan bahwa hewan tersebut mampu berpikir dalam suatu situasi tertentu sampai pada suatu keputusan yang mendorongnya untuk bertindak disertai logika yang tampak menonjol. Tapi dalam kenyataannya, sejumlah besar aktivitas hewan tersebut merupakan warisan jangkauan perilaku otomatis itu beragam sesuai dengan tingkat kompleksitas struktur spesiesnya.

Suatu situasi luar tertentu dapat menimbulkan stimulus pada spesies yang lebih maju yang oleh hewan tersebut disimpan di dalam bank ingatan dan hal ini akan melahirkan respon jika situasi semacam itu akan muncul lagi. Sebagian orang beranggapan bahwa kemampuan ini sangat serupa dengan kemampuan-kemampuan manusia, namun kelak kita akan melihat bahwa terdapat perbedaan yang sangat besar antara perilaku manusia dan perilaku hewan betatapun lihainya hewan tersebut. Timbullah kesulitan akibat kita cenderung menilai bahwa hewan memiliki kemampuan mental seperti kita. Makhluk –makhluk terendah diantara makhluk- makhluk tak bertulang belakang hanya mampu melakukan otomatisasi. Sejumlah tertentu informasi yang diperlukan untuk membuat hewan bereaksi tersimpan didalam molekul-molekul DNA, hal ini merupakan bagian dari kode genetic. Reaksi-reaksi kimiawi terus terjadi begitu lingkungannya berubah: berkat inilah hewan bisa berprilaku.

Tingkat kompleksitas yang lebih tinggi muncul ketika aktifitas itu terjadi secara tetap, diseligi periode-periode kosong. Pembangunan sarang oleh serangga dapat dijadikan contoh disini. Kita melihat adanya kompleksitas yang sama pada tindakan otomatis untuk menyengat: nyamuk betina rata-rata patuh pada impuls yang timbul dalam dirinya ketika muncul stimuli yang merangsang panas dan kelengasan pada kulit manusia, terutama ketika nyamuk itu mencium bau asam butirik yang ada dala jumlah yang sangat kecil pada permukaan kulit. Disini lagi-lagi muncul kasus perilaku bawaan: informasi yang tepat tercatat dalam kode genetic spesies hewan hanya mematuhi perintah-perintah seperti robot saja.

Sekalipun begitu, beberapa hewan tak bertulang belakang mampu melakukan gerak reflex yang terkondisikan. Kita harus selalu ingat kebalikan reflex yang tak terkondisikan dimana tindakan tidak disengaja merupakan hasil suatu stimulus disini kita membicarakan reflex terkondisikan yang memerlukan beberapa persiapan sebelum dilakukan. Pada tigkat awal, stimulus yang sebenarnya dikaitkan dengan stimulus netral yang menyertainya. Pada tingkat kedua, hewan memberikan tanggapan dengan cara yang sama pada stimulus netral itu saja. Reflex-refleks semacam ini dimiliki oleh kumbang dan kupu-kupu misalnya, dimana hewan-hewan itu dituntun oleh bentuk dan warna bunga-bunga yang mereka isap sarinya, dalam hal kumbang, bau juga memainkan peranan. Tapi hal ini hanya sepanjang menyangkut proses belajar serangga-serangga tersebut saja, sebab tidaklah mungkin menjinakkan atau melatih serangga.

Hanya hewan-hewan bertulang belakang sajalah yang mampu melakukan reflex-refleks seperti ini dan mencatat serta memanfaatkan informasi dari luar. Hewan-hewan menyusui dapat dilatih anjing adalah contoh khas dalam hal kemampuan untuk menyatu dengan masyarakat manusia. Tapi disini perilaku bawaan masih tampak menonjol, seperti pola kawin, persiapan untuk membiasakan diri pada tempat tinggalnya yang sering memerlukan teknik-teknik yang sangat komplek, pengasuhan anak, penentuan wilayah untuk tujuan pertahanan, pencarian makanan, hubungan seksual dan sebagainya.

Sejalan dengan naiknya tingkat organisasi, perilaku bawaan tidak hilang juga, meskipun hewan itu mampu mengubah responnya menurut situasi yang dihadapinya. Bahkan pada hewan-hewan menyusui yang lebih tinggi, seperti golongan primata, respon otomatis yang ditetapkan oleh kode genetic hanya menyusut : respon tersebut tidak menghilang sama sekali. P.P Grasse memberikan dua contoh penting disini. Simpanse yang belum pernah hidup dihutan sejak dilahirkan, bila dilepaskan maka simpanse tersebut tahu dengan pasti bagaimana cara membangun tempat bernaung dimalam hari di pohon-pohon. Mereka mengumpulkan bahan-bahan untuk membangun tempat tinggal yang sama dengan tempat tinggal buatan simpanse lainnya yang telah hidup didalam lingkungan alamiah spesiesnya. Begitu juga, gorila selalu ketakutan jika melihat ular dihutan tempat hidup mereka. Reaksi yang sama muncul pada gorilla-gorila muda yang kebetulan melihat seekor ular mati, meskipun mereka baru pertamakali kali itu melihat seekor ular. Hal ini semua jelas merupakan contoh-contoh yang tak diragukan lagi mengenai perilaku bawaan. Hewan terdorong untuk bereaksi dengan cara tertentu sebab didalam molekul DNA nya terkandung gen atau gen-gen yang mengerakkan respon-respon yang telah ditetapkan bila menghadapi stimulus tertentu.

Barangkali salah satu contoh paling spektakuler dari seekor hewan yang mampu mengingat atau menimbun informasi yang terkandung didalam kode genetic adalah sejenis burung asli Australia. Pola berpindah yang luar biasa dari burung istimewa ini dituturkan didalam sebuah karya J. Hamburger yang berjudul ‘La Puissance et la Fragilite’ (Kekuatan dan Kerapuhan).

Pada 27 mei 1955, seorang nelayan jepang menangkap seekor burung yang ditandai dengan sebuah cincin pada 14 maret tahun yang sama di pulau Babel, Australia. Dibagian dunia itu, burubg tersebut dikenal sebagai ‘burung mutton’ atau gunting air berekor pendek. Tangkapan itu merupakan awal serangkaian penemuan yang membuat bisa disusunnya kembali perjalanan besar yang dilakukan oleh burung yang selalu berpindah-pindah ini setiap tahunnya. Tempat keberangkatannya adalah pantai Australia, dari sana burung tersebut terbang ketimur menuju Pasifik, berbelok ke utara sepanjang pantai jepang sampai tiba di Laut Bering, disitu burung tersebut beristirahat sebentar. Setelah persinggahan ini burung tersebut berangkat lagi, kali ini menuju selatan, menyusuri pantai barat Amerika hingga tiba di California. Dari sana terbang kembali menyeberangi Pasifik menuju tempat keberangkatannya. Perjalanan tahunan yang memempuh jarak sekitar 15.000 mil yang membentuk angka 8 ini tidak pernah berubah, baik rute maupun waktunya. Perjalanan ini berlangsung selama enam bulan dan selalu diakhiri pada minggu ketiga bulan September dipulau yang sama dan disangkar yang sama yang ditinggalkannya enam bulan sebelumnya. Yang berikutnya ini lebih mengagumkan lagi. Ketika dating, burung- burung itu membersihkan sarang mereka, kawin dan mengerami satu telur  selama sepuluh hari terakhir dibulan Oktober. Dua bulan kemudian, anak burung itu menetas, tumbuh dengan cepat,  dan pada usia tiga bulan mereka melihat kedua orangtua mereka terbang menempuh perjalanan panjang. Dua minggu kemudian, sekitar pertengahan April, burung-burung muda itupun terbang pula. Tanpa adanya petunjuk jalan, mereka mengikuti rute yang persis sama seperti yang telah diperikan diatas. Implikasi yang ada disini jelas. Didalam materi yang mentransmisi cirri-ciri khas turunan yang terkandung di dalam telur, burung-burung ini mendapatkan semua arah yang diperlukan untuk menempuh perjalanan semacam itu. Sementara sebagian orang beragumen bahwa burung-burung ini dituntun oleh matahari dan bintang-bintang, atau oleh angin yang bertiup sejalan dengan rute penerbangan keliling mereka, factor semacam itu jelas tidak dapat menjelaskan ketepatan geografis dan kronologis perjalanan tersebut. Tak pelak lagi, secara langsung atau tidak, petunjuk-petunjuk untuh menempuh perjalanan 15.000 mil ini tercatat didalam molekul-molekul kimia pemberi perintah yang terdapat di dalam nuclei sel-sel burung ini.

Bagaimana dapat kita bayangkan banyaknya kode informasi yang harus disesuaikan dengan berbagai kondisi yang berlain-lainan, yang semuanya akan dipengaruhi oleh berbagai lingkungan tempat burung-burung itu harus lewat sendiri dan tanpa tuntunan dari Australia ke Laut Bering dan kembali lagi sekaligus harus menepati jadwal waktu secara benar?bagaimana dapat kita pahami jumlah fantastis perintah-perintah yang harus diberikan dalam waktu enam bulan, perintah-perintah yang tak pelak lagi harus diubah-ubah sesuai dengan keadaan, terutama jika iklim berganti?setiap kemungkinan mesti diperkirakan dalam batas-batas jumlah keseluruhan informasi yang disimpan oleh DNA. Orang bertanya-tanya bagaimana program itu mula-mula dituliskan, dan adakah seseorang yang tahu jawabnya.

Di zaman computer sekarang ini, masalah-masalah pemrograman selalu mendorong kita untuk memikirkan beberapa prestasi material manusia sendiri pada tahun-tahun terakhir ini. Kita dibuat terkagum-kagum oleh hasil-hasil teknologi tinggi yang telah di capai oleh pesawat ulang-alik Amerika yang setelah menyelesaikan penerbangan ujinya, kembali ke bumi pada saat yang telah diperhitungkan sebelumnya. Seperti yang telah berulang-ulang ditekankan oleh para pengamat ilmu, keberangkatan pesawat itu, perjalanannya mengelilingi bumi, kembalinya ke bumi dan banyak maneuver lainnya, dibantu oleh computer-komputer besar yang bekerja

  1. 4. Manipulasi-manipulasi Genetika

Gen bertanggung jawab atas setiap fungsi sel. Beberapa ilmuwan telah mempunyai gagasan untuk memberikan pada sel-sel itu sifat-sifat baru dengan mengubah gen. dalam kenyatan sesungguhnya mereka mulai mengadakan eksperimen atas organisme yang bahkan lebih sederhana dari sel, yaitu bakteri. Dengan mencangkok berbagai gen ke dalam hasil usus besar, mereka mendorong produksi substansi-substansi terapis dan nutrisi tertentu; dikarenakan reproduksi bakteri yang cepat sekali, maka mereka dapat mencapai kuantititas sebstansi ini yang sanagt besar. Eksperimen ini berhasil terutama pada beberapa hormon.

Tulang punggung dan panggul kera dan manusia menunjukan perbedaan-perbedaan dikarenaka postur manusia yang berdiri dengan kedua kakinya. Manusia memiliki panggul yang lebih lebar, dan tulang punggungnya menunjukkan lengkungan yang tidak terdapat pada kera; tulang punggung ini menunjukkan kecembungan ke arah belakang. Semua cirri-ciri ini merupakan akibat adanya kenyatan bahwa postur berdiri dan pola berjalan di atas kedua kaki itu telah tercatat dalam warisan genetika manusia. Tapi, seperti akan kita lihat, pola berjalan di atas kedua kaki bukan merupakan cirri bawaan perilaku manusia. Seorang anak harus belajar berjalan, meskipun struktur anatomisnya telah disesuaikan dengan fungsi spesifiknya.

5. Ciri-ciri Biokimia dan Genetika

Sepanjang menyangkut cirri khasnya yang penting, setiap makhluk hidup yang terus berkembang terdiri atas semacam jaringan-jaringan. Setiap buku pegangan Biologi memberikan cirri-ciri umum yang berupa sejumlah besar jaringan: jaringan penutup, jaringan tulang, otot, dll. Masing-masing jaringan ini mempunyai suatu organisasi sel dengan komponen-komponen kimiawi yang identik antara satu spesies dengan spesies yang lainnya. Protein-protein khas bagi suatu jaringan tertentu pada seekor hewan kemungkinan besar sama dengan yang terdapat pada jaringan serupa hewan yang lainnya meskipun tidak ada hubungan antara keduanya. Pada masa lampau, gen tertentu bertanggung jawab atas orientasi ungsi sel tertentu, dan gen pengarah ini tetap melekat pada warisan keturunan, dan disampaikan dari sat generasi ke generasi lainnya tanpa diserta perubahan. Setiap makhluk hidup yang bernafas memerlukan rongga paru-paru untuk memungkinkan masuknya oksigen kedalam darah dan untuk menghilangkan CO2. Manusia memerlukan hal itu sebagaimana hewan lainnya yang bernafa. Suatu penelitian atas semua fungsi organic akan mengungkapkan bahwa, agar hewan dapat bertahan hidup, struktur-strukturnya harus disesuaikan dengan fungsinya. Misalnya, makanan yang diperlukan untuk mempertahankan  kehidupan, seperti Hb uang terkandung dalam sel-sel darah merah, merupakan hasil fungsi-fungsi khusus sel-sel yang dikontrol oleh gen-gen tertentu. Cirri-ciri khas kimiawi yang persis sama pasti juga dimiliki oleh semua Hb. Cirri-ciri tersebut terdapat pada Hb manusia dan bayak hewan lainnya, sebab tidak ada alternative lainnya.

Usaha-usaha telah dilakukan untuk menghubungkan manusia dengan kera melalui penyelidikan atas warisan genetik mereka masing-masing. Jumlahnya tidak sama: 46 pada manusia dan 48 pada kera-kera besar. Karena angka-angk itu dekat satu sama lainnya telah dikemukakan tanpa disertai bukti sama sekali bahwa pada kera 2 kromosom digabungkan menjadi satu agar jumlahnya menyamai jumlah kromosom manusia dari 48 ke 46. Tapi yang jadi permasalahan adalah gen. di sini kita mendekati bahwa sebuah pendapat menyatakan bahwa daftar gen belum tersusn bagi kera dan mungkin belum lengkap bagi manusia, sementara pendapat lai mengaakan bahwa “barangkali kurang dari 2% dari semua gen itu beragam dari satu spesies ke spesies lainnya”(J. de Grouchy). Para pelaksana riset benar-benar tergugah minatnya oleh penyelidikan kromosom, bahkan sekarang meskipun ada penemuan-penemuan sah yang dilakukan oleh para ahli paleontology, namun mereka masih berusaha untuk menyatukan manusia dengan kera.

Yang terakhir tapi tak kalah pentingnya, kita sampai pada makna penting perbedaan dalam aktifitas seksual manusia dan kera, yang diakitkan dengan berbagai perintah yang dikeluarkan oleh hormone-hormon masing-masing spesies. Dengan mengesampingkan perbedaan-perbedaan anatomis tertentu yang meningkatkan variasi-variasi kecil, soal utama yang perlu dicatat adalah bahwa pada manusia aktifitas seksual itu berkesinambungan dan tidak terlalu bergantung pada siklus menstruasi wanita. Pada kera, situasinya berbeda, siklus menstruasi lebih panjang dan ditandai dengan periode kawin yang terutama terlihat jelas dari melebarnya daerah ano-vulvar, diikuti dengan memerahnya kulit penutupnya. Cirri-ciri fisiologis ini dengan sendirinya mendatangkan pengaruh secara lengsung pada perilaku kera. Tindakan mereka hendaknya dapat dilihat bahwa hal itu merupakan suatu fenomena yang sangat umum yang mengarahkan perilaku hewan.

6. Rekombinasi Gen

Pengertian dan arti definisi rekombinasi gen adalah penggabungan beberapa gen induk jantan dan betina ketika pembuahan ovum oleh sperma yang menyebabkan adanya susunan pasangan gen yang berbeda dari induknya. Akibatnya adalah lahirnya varian spesies baru. Rekombinasi gen – gen yang terjadi karena perkawinan silang merupakan suatu bahan mentah evolusi karena melalui telekombinasi ini dimungkinkan terbentuknya varietas baru,terbentuknya species baru

Terbentuknya spesies baru dapat disebabkan oleh:

  1. 1. Isolasi Geografi : 2 populasi/spesies tidak mampu melakukan interhibridasi karena dipisahkan oleh factor geografi /keadaan alam.
  2. 2. Isolasi Reproduksi : 2 populasi / spesies yang terdapat pada daerah yang sama tidak mampu melakukan interhibridasi. Dua spesies yang berbeda menghuni daerah yang sama disebut spesies simpatik. Populasinya disebut populasi simpatik.

Isolasi reproduksi dapat terjadi melalui :

a) Isolasi ekologi , apabila dua spesies simpatik yang terdapat disuatu daerah masing – masing menempati habitat yang berbeda.

b) Isolasi musim, terjadi bila dua spesies simpatik masing – masing memiliki pemasakan kelamin yang berbeda

c) Isolasi tingkah laku, terjadi bila dua spesies simpatik mempunyai bentuk morfologi alat reproduksi yang berbeda pada waktu kawin

d) Isolasi mekanik, terjadi apabila dua spesies simpatik terdapat sel gamet jantan yang tidak mempunyai viabilitas pada saluran kelamin betina

e)      Bastar mandul, apabila dua spesises simpatik menghasilkan keturunan mandul

Pada organisme aseksual, gen diwariskan bersama, atau ditautkan, karena ia tidak dapat bercampur dengan gen organisme lain selama reproduksi. Keturunan organisme seksual mengandung campuran acak kromosom leluhur yang dihasilkan melalui pemilahan bebas. Pada proses rekombinasi genetika terkait, organisme seksual juga dapat bertukarganti DNA antara dua kromosom yang berpadanan.[43] Rekombinasi dan pemilahan ulang tidak mengubahan frekuensi alel, namun mengubah alel mana yang diasosiasikan satu sama lainnya, menghasilkan keturunan dengan kombinasi alel yang baru.[44] Manakala proses ini meningkatkan variasi pada keturunan individu apapun, pencampuran genetika dapat diprediksi untuk tidak menghasilkan efek, meningkatkan, ataupun mengurangi variasi genetika pada populasi, bergantung pada bagaimana ragam alel pada populasi tersebut terdistribusi. Sebagai contoh, jika dua alel secara acak terdistribusi pada sebuah populasi, maka jenis kelamin tidak akan memberikan efek pada variasi. Namun, jika dua alel cenderung ditemukan sebagai satu pasang, maka pencampuran genetika akan menyeimbangkan distribusi tak-acak ini, dan dari waktu ke waktu membuat organisme pada populasi menjadi lebih mirip satu sama lainnya. Efek keseluruhan jenis kelamin pada variasi alami tidaklah jelas, namun riset baru-baru ini menunjukkan bahwa jenis kelamin biasanya meningkatkan variasi genetika dan dapat meningkatkan laju evolusi.

Rekombinasi mengijinkan alel sama yang berdekatan satu sama lainnya pada unting DNA diwariskan secara bebas. Namun laju rekombinasi adalah rendah, karena pada manusia dengan potongan satu juta pasangan basa DNA, terdapat satu di antara seratus peluang kejadian rekombinasi terjadi per generasi. Akibatnya, gen-gen yang berdekatan pada kromosom tidak selalu disusun ulang menjauhi satu sama lainnya, sehingga cenderung diwariskan bersama.[ Kecenderungan ini diukur dengan menemukan bagaimana sering dua alel gen yang berbeda ditemukan bersamaan, yang disebut sebagai ketakseimbangan pertautan (linkage disequilibrium). Satu set alel yang biasanya diwariskan bersama sebagai satu kelompok disebut sebagaihaplotipe.

Reproduksi seksual membantu menghilangkan mutasi yang merugikan dan mempertahankan mutasi yang menguntungkan. Sebagai akibatnya, ketika alel tidak dapat dipisahkan dengan rekombinasi (misalnya kromosom Y mamalia yang diwariskan dari ayah ke anak laki-laki), mutasi yang merugikan berakumulasi. Selain itu, rekombinasi dan pemilahan ulang dapat menghasilkan individu dengan kombinasi gen yang baru dan menguntungkan. Efek positif ini diseimbangkan oleh fakta bahwa proses ini dapat menyebabkan mutasi dan pemisahan kombinasi gen yang menguntungkan.

7. Gene Flow

Gene flow dapat terjadi apabila statu individu pergi meninggalkan populasi asal atau melakukan emigrasi ke populasi lain dan masuknya individu ke dalam populasi yang berbeda sehingganmengakibatkan perubahan alel pada individu (Klug & Cummings 1994:745).

 

 

 

 

 

 

 

Singa jantan meninggalkan kelompok di mana ia lahir, dan menuju ke kelompok yang baru untuk berkawin. Hal ini menyebabkan aliran gen antar kelompok singa.

 

 

 

 

Aliran gen merupakan pertukaran gen antar populasi, yang biasanya merupakan spesies yang sama. Contoh aliran gen dalam sebuah spesies meliputi migrasi dan perkembangbiakan organisme atau pertukaran serbuk sari. Transfer gen antar spesies meliputi pembentukan organisme hibrid dan transfer gen horizontal.

Migrasi ke dalam atau ke luar populasi dapat mengubah frekuensi alel, serta menambah variasi genetika ke dalam suatu populasi. Imigrasi dapat menambah bahan genetika baru ke lungkang gen yang telah ada pada suatu populasi. Sebaliknya, emigrasi dapat menghilangkan bahan genetika. Karena pemisahan reproduksi antara dua populasi yang berdivergen diperlukan agar terjadi spesiasi, aliran gen dapat memperlambat proses ini dengan menyebarkan genetika yang berbeda antar populasi. Aliran gen dihalangi oleh barisan gunung, samudera, dan padang pasir. Bahkan bangunan manusia seperti Tembok Raksasa Cina dapat menghalangi aliran gen tanaman.

Bergantung dari sejauh mana dua spesies telah berdivergen sejak MRCA (most recent common ancestor) mereka, adalah mungkin kedua spesies tersebut menghasilkan keturunan, seperti pada kuda dan keledai yang hasil perkawinan campurannya menghasilkan bagal. Hibrid tersebut biasanya mandul, oleh karena dua set kromosom yang berbeda tidak dapat berpasangan selama meiosis. Pada kasus ini, spesies yang berhubungan dekat dapat secara reguler saling kawin, namun hibrid yang dihasilkan akan terseleksi keluar, dan kedua spesies ini tetap berbeda. Namun, hibrid yang berkemampuan berkembang biak kadang-kadang terbentuk, dan spesies baru ini dapat memiliki sifat-sifat antara kedua spesies leluhur ataupun fenotipe yang secara keseluruhan baru. Pentingnya hibridisasi dalam pembentukan spesies baru hewan tidaklah jelas, walaupun beberapa kasus telah ditemukan pada banyak jenis hewan, Hyla versicolor merupakan contoh hewan yang telah dikaji dengan baik.

 

Hibridisasi merupakan cara spesiasi yang penting pada tanaman, karena poliploidi (memiliki lebih dari dua kopi pada setiap kromosom) dapat lebih ditoleransi pada tanaman dibandingkan hewan. Poliploidi sangat penting pada hibdrid karena ia mengijinkan reproduksi, dengan dua set kromosom yang berbeda, tiap-tiap kromosom dapat berpasangan dengan pasangan yang identik selama meiosis. Poliploid juga memiliki keanekaragaman genetika yeng lebih, yang mengijinkannya menghindari depresi penangkaran sanak (inbreeding depression) pada populasi yang kecil.

Transfer gen horizontal merupakan transfer bahan genetika dari satu organisme ke organisme lainnya yang bukan keturunannya. Hal ini paling umum terjadi pada bakteri. Pada bidang pengobatan, hal ini berkontribusi terhadap resistansi antibiotik. Ketika satu bakteri mendapatkan gen resistansi, ia akan dengan cepat mentransfernya ke spesies lainnya. Transfer gen horizontal dari bakteri ke eukariota seperti khamir Saccharomyces cerevisiae dan kumbang Callosobruchus chinensis juga dapat terjadi. Contoh transfer dalam skala besar adalah pada eukariota bdelloid rotifers, yang tampaknya telah menerima gen dari bakteri, fungi, dan tanaman. Virus juga dapat membawa DNA antar organisme, mengijinkan transfer gen antardomain. Transfer gen berskala besar juga telah terjadi antara leluhur sel eukariota dengan prokariota selama akuisisi kloroplas dan mitokondria.
8. Gene Drift

 

 

 

 

 

 

 

 

 

 

 

 

Hanyutan genetik, ingsut genetik, penyimpangan genetik, atau rambang genetik dalam genetika populasi, merupakan akumulasi kejadian acak yang menggeser tampilan lungkang gen (gene pool) secara perlahan dari keadaan setimbang, namun semakin membesar seiring berjalannya waktu. Sebenarnya, istilah “genetik” kurang tepat dan yang lebih baik adalah “alel“, karena yang sebenarnya terjadi adalah proses perubahan frekuensi alel suatu populasi karena yang berubah adalah frekuensi dari alel-alel yang ada di dalam populasi yang bersangkutan.

Hanyutan genetik berbeda dari seleksi alam. Yang terakhir ini merupakan proses tak acak yang memiliki kecenderungan membuat alel menjadi lebih atau kurang tersebar pada sebuah populasi dikarenakan efek alel pada kemampuan individu beradaptasi dan reproduksi.

Pada populasi kecil, efek galat contoh (sampling error) pada alel tertentu dalam keseluruhan populasi dapat menyebabkan frekuensinya meningkat atau menurun pada generasi selanjutnya. Ini merupakan perubahan evolusioner; sering kali gen tertentu menjadi tetap pada populasi, atau menjadi punah. Apabila waktu untuk proses ini mencukupi dapat diikuti oleh proses spesiasi seiring terakumulasinya hanyutan genetika.

Konsep ini pertama kali diperkenalkan oleh Sewall Wright pada tahun 1920-an. Terdapat pedebatan mengenai seberapa signifikan hanyutan genetika. Banyak ilmuwan yang menganggapnya sebagai salah satu mekanisme utama evolusi biologis. Beberapa penulis, seperti Richard Dawkins, menganggap hanyutan genetik penting (terutama untuk populasi yang kecil atau terisolasi), namun kurang penting dibandingkan seleksi alam.

Merupakan sebuah proses bebas yang menghasilkan perubahan acak pada frekuensi sifat dalam suatu populasi. Hanyutan genetika dihasilkan dari probabilitas apakah suatu sifat akan diwariskan ketika suatu individu bertahan hidup dan bereproduksi.

Simulasi hanyutan genetika 20 alel yang tidak bertaut pada jumlah populasi 10 (atas) dan 100 (bawah). Hanyutan mencapai fiksasi lebih cepat pada populasi yang lebih kecil.

Hanyutan genetika atau ingsut genetik merupakan perubahan frekuensi alel dari satu generasi ke generasi selanjutnya yang terjadi karena alel pada suatu keturunan merupakan sampel acak (random sample) dari orang tuanya; selain itu ia juga terjadi karena peranan probabilitas dalam penentuan apakah suatu individu akan bertahan hidup dan bereproduksi atau tidak. Dalam istilah matematika, alel berpotensi mengalami galat percontohan (sampling error). Karenanya, ketika gaya dorong selektif tidak ada ataupun secara relatif lemah, frekuensi-frekuensi alel cenderung “menghanyut” ke atas atau ke bawah secara acak (langkah acak). Hanyutan ini berhenti ketika sebuah alel pada akhirnya menjadi tetap, baik karena menghilang dari populasi, ataupun menggantikan keseluruhan alel lainnya. Hanyutan genetika oleh karena itu dapat mengeliminasi beberapa alel dari sebuah populasi hanya karena kebetulan saja. Bahkan pada ketidadaan gaya selektif, hanyutan genetika dapat menyebabkan dua populasi yang terpisah dengan stuktur genetik yang sama menghanyut menjadi dua populasi divergen dengan set alel yang berbeda.

Waktu untuk sebuah alel menjadi tetap oleh hanyutan genetika bergantung pada ukuran populasi, dengan fiksasi terjadi lebih cepat dalam populasi yang lebih kecil. Pengukuran populasi yang tepat adalah ukuran populasi efektif, yakni didefinisikan oleh Sewal Wright sebagai bilangan teoritis yang mewakili jumlah individu berkembangbiak yang akan menunjukkan derajat perkembangbiakan terpantau yang sama.

Walaupun seleksi alam bertanggung jawab terhadap adaptasi, kepentingan relatif seleksi alam dan hanyutan genetika dalam mendorong perubahan evolusi secara umum merupakan bidang riset pada biologi evolusi. Investigasi ini disarankan oleh teori netral evolusi molekul, yang mengajukan bahwa kebanyakan perubahan evolusi merupakan akibat dari fiksasi mutasi netral yang tidak memiliki efek seketika pada kebugaran suatu organisme. Sehingga, pada model ini, kebanyakan perubahan genetika pada sebuat populasi merupakan akibat dari tekanan mutasi konstan dan hanyutan genetika.

 

D. Seleksi Alam

1. Seleksi Jenis Kelamin

seleksi alam yang merupakan sebuah proses yang menyebabkan sifat terwaris yang berguna untuk keberlangsungan hidup dan reproduksi organisme menjadi lebih umum dalam suatu populasi – dan sebaliknya, sifat yang merugikan menjadi lebih berkurang. Hal ini terjadi karena individu dengan sifat-sifat yang menguntungkan lebih berpeluang besar bereproduksi, sehingga lebih banyak individu pada generasi selanjutnya yang mewarisi sifat-sifat yang menguntungkan ini. Setelah beberapa generasi, adaptasi terjadi melalui kombinasi perubahan kecil sifat yang terjadi secara terus menerus dan acak ini dengan seleksi alam.

Walaupun perubahan yang dihasilkan oleh hanyutan dan seleksi alam kecil, perubahan ini akan terakumulasi, menyebabkan perubahan yang substansial pada organisme. Proses ini mencapai puncaknya dengan menghasilkan spesies yang baru. Dan sebenarnya, kemiripan antara organisme yang satu dengan organisme yang lain mensugestikan bahwa semua spesies yang kita kenal berasal dari nenek moyang yang sama melalui proses divergen yang terjadi secara perlahan ini.

Seleksi alam adalah proses di mana mutasi genetika yang meningkatkan reproduksi menjadi (dan tetap) lebih umum dari generasi yang satu ke genarasi yang lain pada sebuah populasi. Ia sering disebut sebagai mekanisme yang “terbukti sendiri” karena:

  • Variasi terwariskan terdapat dalam populasi organisme.
  • Organisme menghasilkan keturunan lebih dari yang dapat bertahan hidup
  • Keturunan-keturunan ini bervariasi dalam kemampuannya bertahan hidup dan bereproduksi.

Kondisi-kondisi ini menghasilkan kompetisi antar organisme untuk bertahan hidup dan bereproduksi. Oleh sebab itu, organisme dengan sifat-sifat yang lebih menguntungkan akan lebih berkemungkinan mewariskan sifatnya, sedangkan yang tidak menguntungkan cenderung tidak akan diwariskan ke generasi selanjutnya.

Konsep pusat seleksi alam adalah kebugaran evolusi organisme. Kebugaran evolusi mengukur kontribusi genetika organisme pada generasi selanjutnya. Namun, ini tidaklah sama dengan jumlah total keturunan, melainkan kebugaran mengukur proporsi generasi tersebut untuk membawa gen sebuah organisme. Karena itu, jika sebuah alel meningkatkan kebugaran lebih daripada alel-alel lainnya, maka pada tiap generasi alel tersebut menjadi lebih umum dalam popualasi. Contoh-contoh sifat yang dapat meningkatkan kebugaran adalah peningkatan keberlangsungan dan fekunditas. Sebaliknya, kebugaran yang lebih rendah yang disebabkan oleh alel yang kurang menguntungkan atau merugikan mengakibatkan alel ini menjadi lebih langka. Adalah penting untuk diperhatikan bahwa kebugaran sebuah alel bukanlah karakteristik yang tetap. Jika lingkungan berubah, sifat-sifat yang sebelumnya bersifat netral atau merugikan bisa menjadi menguntungkan dan yang sebelumnya menguntungkan bisa menjadi merugikan.

Seleksi alam dalam sebuah populasi untuk sebuah sifat yang nilainya bervariasi, misalnya tinggi badan, dapat dikategorikan menjadi tiga jenis. Yang pertama adalah seleksi berarah(directional selection), yang merupakan geseran nilai rata-rata sifat dalam selang waktu tertentu, misalnya organisme cenderung menjadi lebih tinggi. Kedua, seleksi pemutus (disruptive selection), merupakan seleksi nilai ekstrem, dan sering mengakibatkan dua nilai yang berbeda menjadi lebih umum (dengan menyeleksi keluar nilai rata-rata). Hal ini terjadi apabila baik organisme yang pendek ataupun panjang menguntungkan, sedangkan organisme dengan tinggi sedang tidak. Ketiga, seleksi pemantap (stabilizing selection), yaitu seleksi terhadap nilai-nilai ektrem, menyebabkan penurunan variasi di sekitar nilai rata-rata. Hal ini dapat menyebabkan organisme secara pelahan memiliki tinggi badan yang sama.

Kasus khusus seleksi alam adalah seleksi seksual, yang merupakan seleksi untuk sifat-sifat yang meningkatkan keberhasilan perkawinan dengan meningkatkan daya tarik suatu organisme. Sifat-sifat yang berevolusi melalui seleksi seksual utamanya terdapat pada pejantan beberapa spesies hewan. Walaupun sifat ini dapat menurunkan keberlangsungan hidup individu jantan tersebut (misalnya pada tanduk rusa yang besar dan warna yang cerah dapat menarik predator). Ketidakuntungan keberlangsungan hidup ini diseimbangkan oleh keberhasilan reproduksi yang lebih tinggi pada penjantan.

Bidang riset yang aktif pada saat ini adalah satuan seleksi, dengan seleksi alam diajukan bekerja pada tingkat gen, sel, organisme individu, kelompok organisme, dan bahkan spesies. Dari model-model ini, tiada yang eksklusif, dan seleksi dapat bekerja pada beberapa tingkatan secara serentak. Di bawah tingkat individu, gen yang disebut transposon berusaha menkopi dirinya di seluruh genom. Seleksi pada tingkat di atas individu, seperti seleksi kelompok, dapat mengijinkan evolusi ko-operasi.

 

 

 

 

 

 

 

 

 

 

 

Seleksi Alam Populasi Berwarna Kulit Gelap

 

 

 

Konsep seleksi alam adalah landasan utama Darwinisme. Pernyataan ini ditegaskan bahkan pada judul buku dimana Darwin mengajukan teorinya: The Origin of Species, by means of Natural Selection (Asal usul Spesies, melalui Seleksi Alam)

Seleksi alam didasarkan pada anggapan bahwa di alam selalu terdapat persaingan untuk kelangsungan hidup. Ia memilih makhluk-makhluk dengan sifat-sifat yang paling membuat mereka mampu mengatasi tekanan yang diberikan lingkungan. Pada akhir persaingan ini, yang terkuat, yang paling sesuai dengan keadaan alam, akan bertahan. Sebagai contoh, pada sekawanan rusa yang berada di bawah ancaman pemangsa, mereka yang mampu berlari lebih cepat secara alami akan bertahan hidup. Hasilnya, kawanan rusa tersebut pada akhirnya hanya akan terdiri dari rusa-rusa yang mampu berlari cepat.

Meskipun demikian, betapapun lamanya hal ini berlangsung, ini tidak akan merubah rusa tersebut menjadi jenis lain. Rusa lemah akan tersingkirkan, yang kuat bertahan, tetapi, karena tidak ada perubahan yang terjadi dalam data genetik mereka, perubahan spesies pun tidak akan terjadi. Meskipun proses seleksi ini terjadi terus-menerus, rusa tetap akan menjadi rusa.

Contoh tentang rusa tersebut berlaku untuk semua spesies. Dalam populasi manapun, seleksi alam hanya menyingkirkan yang lemah, atau individu yang tidak cocok yang tidak bisa menyesuaikan diri dengan kondisi alam dalam habitat mereka. Mekanisme seperti ini tidak akan menghasilkan spesies baru, informasi genetik yang baru, atau organ baru. Artinya, seleksi alam tidak bisa menyebabkan apapun untuk berevolusi. Darwin pun menerima fakta ini, sesuai dengan pernyataannya “Seleksi alam tidak bisa berbuat apapun hingga perbedaan individu atau keragaman yang menguntungkan terjadi.” Itulah mengapa neo-Darwinisme harus menambahkan mekanisme mutasi sebagai faktor pengubah informasi genetik dalam konsep seleksi alam.

Persaingan untuk kelangsungan hidup?

Anggapan mendasar dari teori seleksi alam adalah bahwa di alam selalu terdapat persaingan sengit untuk kelangsungan hidup, dan setiap makhluk hidup hanya mempedulikan dirinya sendiri. Pada saat Darwin mengajukan teori ini, gagasan Thomas Malthus, seorang ahli ekonomi klasik Inggris, berpengaruh penting pada dirinya. Malthus menyatakan bahwa manusia tak terhindar dari persaingan dalam mempertahankan kelangsungan hidupnya. Ia mendasari pandangannya pada kenyataan bahwa populasi, yang berarti juga kebutuhan akan sumber makanan, bertambah menurut deret ukur, sementara sumber makanan itu sendiri bertambah menurut deret hitung. Alhasil, ukuran populasi mau tak mau akan dibatasi oleh faktor-faktor lingkungan, seperti kelaparan dan penyakit. Darwin menerapkan pandangan Malthus tentang persaingan sengit untuk kelangsungan hidup antar manusia kepada alam secara luas, dan menyatakan bahwa “seleksi alam” adalah sebuah dampak persaingan ini.

Namun, penelitian lebih lanjut mengungkapkan bahwa tidak terdapat persaingan untuk hidup di alam seperti yang dirumuskan Darwin. Sebagai hasil dari penelitian menyeluruh terhadap kelompok-kelompok hewan pada tahun 1960-an hingga 1970-an, V. C. Wynne-Edward, seorang ahli ilmu hewan Inggris, menyimpulkan bahwa makhluk hidup menyeimbangkan populasi mereka melalui suatu cara menarik, yang mencegah persaingan untuk memperoleh makanan. Populasi diatur tidak melalui penyingkiran yang lemah melalui hal-hal seperti wabah penyakit atau kelaparan, tetapi oleh sebuah mekanisme pengatur naluriah. Dengan kata lain, hewan mengatur jumlah mereka tidak dengan persaingan sengit, seperti diusulkan Darwin, tetapi dengan membatasi perkembangbiakan.

Bahkan tumbuhan menunjukkan contoh pengaturan populasi, yang menyanggah pernyataan Darwin tentang seleksi melalui persaingan. Pengamatan seorang ahli ilmu tumbuhan, A. D. Bradshaw, menunjukkan bahwa selama berkembangbiak, tumbuhan menyesuaikan diri dengan “kepadatan” penanaman, dan membatasi perkembangbiakan mereka jika daerah itu telah penuh dengan tumbuhan. Di lain pihak, contoh pengorbanan yang teramati pada hewan seperti semut dan lebah menggambarkan sebuah model yang sama sekali bertentangan dengan persaingan untuk kelangsungan hidup menurut Darwinis.

Dalam beberapa tahun terakhir, penelitian telah mengungkap penemuan mengenai “pengorbanan diri” bahkan pada bakteri. Makhluk hidup tanpa otak atau sistem syaraf ini, yang sama sekali tak berkemampuan untuk berfikir, membunuh diri mereka sendiri untuk menyelamatkan bakteri lain ketika mereka diserang virus.

Contoh-contoh ini pastilah menyanggah anggapan dasar dari seleksi alam: persaingan untuk kelangsungan hidup yang tidak bisa dihindari. Memang benar terdapat persaingan di alam; akan tetapi terdapat juga model yang jelas dari “pengorbanan diri” dan “kesetiakawanan”.

 

 

 

 

 

 

Darwin telah terpengaruh oleh Thomas Malthus ketika mengembangkan tesisnya mengenai pertarungan demi hidup Namun, segenap pengamatan dan percobaan membuktikan bahwa Malthus keliru.

 

 

 

 

 

 

Penelitian dan Percobaan

Terlepas dari kelemahan secara teori tersebut di atas, teori evolusi melalui seleksi alam kembali menemui kebuntuan mendasar ketika berhadapan dengan penemuan-penemuan ilmiah yang nyata. Nilai ilmiah sebuah teori harus dikaji berdasarkan berhasil atau tidaknya teori ini dalam percobaan dan pengamatan. Evolusi melalui seleksi alam gagal dalam keduanya.

Sejak masa Darwin, tidak pernah dikemukakan sepotong bukti pun untuk menunjukkan bahwa seleksi alam telah menyebabkan makhluk hidup berevolusi. Colin Patterson, seorang ahli purbakala senior pada Museum Sejarah Alam (Museum of Natural Histroy) Inggris di London yang juga seorang evolusionis terkemuka, menegaskan bahwa seleksi alam belum pernah teramati memiliki kemampuan untuk menyebabkan makhluk hidup berevolusi:

Tak seorangpun pernah menghasilkan satu spesies melalui mekanisme seleksi alam. Tak seorangpun pernah mendekatinya, dan kebanyakan dari perdebatan di dalam neo-Darwinisme adalah seputar pertanyaan ini.

Pierre-Paul Grasse, ahli ilmu hewan terkenal Perancis yang juga penguji Darwinisme, berkomentar di dalam “Evolusi dan Seleksi Alam”, satu bab pada bukunya The Evolution of Living Organisms (Evlolusi Makhluk Hidup).

“Evolusi sedang beraksi” menurut J. Huxley dan ahli biologi lainnya hanyalah pengamatan atas fakta-fakta demografi, keragaman genotipe lokal, dan sebaran geografis. Sering kali spesies yang diamati hampir tidak berubah selama ratusan abad! Keragaman akibat [perubahan] keadaan, dengan didahului perubahan genom, tidak berarti evolusi, dan kita memiliki bukti nyata atas hal ini pada banyak spesies panchronic [yaitu fosil hidup yang tidak berubah selama jutaan tahun].

Sebuah tinjauan lebih dekat pada beberapa “contoh yang teramati dari seleksi alam” yang disajikan oleh ahli biologi yang mendukung teori evolusi, akan mengungkapkan bahwa, pada kenyataannya, mereka tidak menyediakan bukti apapun bagi evolusi.

Kisah Sebenarnya tentang Melanisme Industri

Ketika sumber-sumber evolusionis dikaji, seseorang pasti akan melihat bahwa contoh ngengat di Inggris selama Revolusi Industri disebut-sebut sebagai contoh evolusi melalui seleksi alam. Hal ini diajukan sebagai contoh paling nyata dari evolusi yang teramati, dalam buku-buku acuan, majalah dan bahkan sumber-sumber akademis. Meskipun pada kenyataanya, contoh tersebut tidak berhubungan sama sekali dengan evolusi.

Pertama, mari kita mengingat kembali apa yang dikatakan: Menurut catatan ini, pada permulaan Revolusi Industri di Inggris, warna kulit pohon disekitar Manchester cukup terang. Oleh sebab itu, ngengat berwarna gelap yang berada di pohon itu akan lebih mudah dilihat oleh burung pemangsa mereka, dan karenanya mereka berkemungkinan kecil untuk bertahan hidup. Lima puluh tahun kemudian, di hutan-hutan dimana polusi industri telah membunuh lumut kerak, kulit pohon menjadi lebih gelap, dan sekarang ngengat berwarna terang menjadi paling banyak diburu, karena mereka paling mudah terlihat. Akibatnya, perbandingan antara ngengat berwarna terang dengan berwarna gelap menurun. Evolusionis mempercayai hal ini sebagai satu bukti besar bagi teori mereka. Mereka berlindung dan menghibur diri dengan bangga, menunjukkan bagaimana ngengat berwarna terang “berevolusi” menjadi ngengat berwarna gelap.

 

 

 

 

 

 

 

 

 

 

 

Gambar atas menunjukkan pohon-pohon dengan ngengat di atasnya sebelum revolusi industri, dan gambar bawah menunjukkan keadaan sesudahnya. Karena pohon-pohon ini menjadi lebih gelap, burung-burung dapat lebih mudah menangkap ngengat berwarna terang sehingga jumlah ngengat ini berkurang. Akan tetapi, ini bukan contoh “evolusi”, sebab tiada spesies baru yang muncul; yang terjadi adalah berubahnya perbandingan dua jenis yang ada dari spesies yang memang sudah ada.

 

 

 

 

 

 

 

 

Namun demikian, walaupun kita percaya bahwa fakta ini benar, seharusnya sudah jelas bahwa ngengat-ngengat ini tidak bisa dijadikan bukti bagi teori evolusi, karena tidak ada bentuk baru yang muncul yang sebelumnya tidak ada. Ngengat berwarna gelap telah ada dalam populasi ngengat sebelum Revolusi Industri. Hanya perbandingan antar varietas ngengat yang ada saja yang berubah. Ngengat tidak memperoleh suatu sifat atau organ baru, yang akan menyebabkan “spesiasi” [terbentuknya spesies baru]. Agar satu spesies ngengat berubah menjadi satu spesies hidup lain, burung misalnya, harus ada penambahan baru atas gen-gennya. Artinya, sebuah program genetik yang benar-benar baru harus dimasukan termasuk informasi tentang ciri-ciri fisik dari burung.

Ini adalah jawaban yang diberikan untuk kisah “Melanisme Industri” kaum evolusionis. Namun, masih ada sisi yang lebih menarik dari kisah ini: Tidak hanya penjelasannya, tetapi kisah itu sendiri tidak sepenuhnya benar. Sebagai ahli biologi molekuler, Jonathan Wells menjelaskan dalam bukunya Icons of Evolution (Lambang-lambang Evolusi), cerita ngengat berbintik ini, yang dimasukkan pada setiap buku biologi evolusi dan karenanya, telah menjadi sebuah “lambang” dalam hal ini, tidak mencerminkan kebenaran. Wells mengkaji di dalam bukunya bagaimana percobaan Bernard Kettlewell, yang dikenal sebagai “bukti percobaan”, sebenarnya adalah skandal ilmiah. Beberapa unsur dasar dari skandal ini adalah:

  • Banyak percobaan yang dilakukan setelah Kettlewell mengungkap bahwa hanya ada satu jenis dari ngengat ini yang hinggap pada batang pohon, dan semua jenis lainnya lebih suka hinggap di bawah dahan kecil yang mendatar. Sejak 1980 menjadi teranglah bahwa ngengat umumnya tidak hinggap pada batang pohon. Selama 25 tahun kerja lapangan, banyak ilmuwan seperti Cyril Clarke dan Rory Howlett, Michael Majerus, Tony Liebert, dan Paul Brakefield menyimpulkan bahwa dalam percobaan Kettlewell, ngengat dipaksa untuk bertingkah laku tidak umum, karenanya, hasil percobaan tersebut tidak bisa diterima secara ilmiah.14
  • Para Ilmuwan yang menguji kesimpulan Kettlewell muncul dengan hasil yang bahkan lebih menarik: Walaupun jumlah ngengat berwarna terang diharapkan akan lebih banyak pada daerah yang kurang berpolusi di Inggris, ngengat berwarna gelap di sana jumlahnya empat kali lebih banyak dari yang terang. Ini berarti tidak terdapat hubungan antara populasi ngengat dan batang kayu seperti yang dikatakan Kettlewell dan diulang-ulang oleh hampir semua sumber evolusionis.
  • Ketika pengujian diperdalam, besarnya skandal ini semakin nyata: “Ngengat pada batang pohon” yang difoto oleh Kettlewell, sebenarnya adalah ngengat mati. Kettle well menggunakan serangga mati yang direkatkan atau ditusukkan pada batang kayu dan kemudian memfotonya. Pada dasarnya, sulit sekali untuk mengambil gambar seperti itu karena ngengat tidak hinggap di batang pohon, melainkan di bawah dedaunan.

Fakta-fakta ini diungkapkan oleh masyarakat ilmiah baru di akhir 1990-an. Runtuhnya mitos Melanisme Industri, yang telah menjadi salah satu bahasan berharga dalam kuliah-kuliah “Mengenal Evolusi” di setiap Universitas selama beberapa dasawarsa, sangat mengecewakan para evolusionis. Salah satu dari mereka, Jerry Coyne, bertutur:

Reaksi saya mirip dengan kekecewaan yang menyertai temuan saya, pada umur 6 tahun, bahwa ternyata ayah sayalah dan bukan Santa yang membawa hadiah pada malam natal. Jadi, “contoh paling terkenal dari seleksi alam” telah dibuang ke tumpukan sampah sejarah sebagai sebuah skandal ilmiah—sebuah hal yang tak terhindarkan, karena, berkebalikan dengan apa yang dinyatakan evolusionis, seleksi alam bukanlah sebuah “mekanisme evolusi”.

Singkatnya, seleksi alam tidak mampu menambahkan organ baru pada makhluk hidup, atau menghilangkan salah satunya, ataupun merubah organisme dari satu spesies menjadi spesies lain. Bukti “terbesar” yang ada sejak Darwin hanya beranjak tidak lebih jauh dari “Melanisme Industri” ngengat di Inggris.

Mengapa Seleksi Alam Tidak Bisa Menjelaskan Kompleksitas

Seperti yang kami tunjukkan pada bagian awal, masalah terbesar bagi teori evolusi melalui seleksi alam, adalah bahwa ia tidak bisa memunculkan organ atau sifat baru pada makhluk hidup. Seleksi alam tidak bisa mengembangkan data genetik suatu spesies; karenanya, ia tidak bisa digunakan untuk menjelaskan kemunculan spesies baru. Pembela terbesar teori Punctuated Equilibrium (Keseimbangan Tersela), Stephen Jay Gould, menyatakan kebuntuan seleksi alam ini sebagai berikut:

Intisari Dawinisme terdapat dalam sebuah kalimat: seleksi alam adalah kekuatan kreatif dari perubahan secara evolusi. Tak seorang pun menyangkal bahwa seleksi alam akan memainkan peran negatif dengan menyisihkan yang lemah. Teori Darwin mensyaratkan seleksi alam juga menciptakan yang kuat.

Metoda menyesatkan lainnya yang diterapkan para evolusionis dalam masalah seleksi alam adalah usaha mereka untuk menghadirkan mekanisme ini sebagai sebuah perancang cerdas. Namun, seleksi alam tidak memiliki kecerdasan. Seleksi alam tidak memiliki kehendak yang dapat menentukan mana yang baik dan buruk bagi makhluk hidup. Akibatnya, seleksi alam tidak bisa menjelaskan system-sistem biologis dan organ-organ yang memiliki “kompleksitas tak tersederhanakan”. Sistem-sistem dan organ-organ ini tersusun atas banyak bagian yang bekerja sama, dan tidak akan berguna jika satu saja bagiannya hilang atau rusak. (Sebagai contoh, mata manusia tidak akan berfungsi kecuali jika ia memiliki semua bagiannya secara utuh).

Oleh karena itu, kehendak yang menyatukan semua bagian ini seharusnya mampu memperkirakan masa depan dan secara langsung mengarahkan kepada manfaat yang akan didapat pada tahapan terakhir. Karena seleksi alam tidak memiliki kesadaran atau kehendak, seleksi alam tidak bisa melakukan hal seperti itu. Fakta ini, yang menghancurkan dasar dari teori evolusi, juga mengganggu Darwin, yang menulis: “Jika bisa dibuktikan bahwa ada organ kompleks, yang tidak mungkin dapat terbentuk melalui banyak perubahan kecil bertahap, maka teori saya akan sepenuhnya runtuh.”

2. Persilangan Individu

Dalam kasus mengenai binatang atau tanaman dengan kelamin terpisah, sudah jelas bahwa dua individu harus selalu merapat atau bersetubuh untuk melahirkan keturunan. Tetapi pada kasus hermaprodit hal ini sama sekali tidak jelas, namun demikian ada alasan yang dapat dipercaya bagi semua makhluk hermaprodit maka dua individu, hanya kadang-kadangn saja atau secara kebiasaan melakukan secara bersamaan untuk mengembangbiakan sejenisnya.

  1. 3. Penyimpangan Sifat

Dengan mengkaji sifat tanaman atau binatang yang telah berhasil dalam perjuangannya di Negara mana pun dengan keasliannya dan telah beradaptasi di sana maka kita memperoleh gagasan yang maish mentah tentang cara bagaimana beberapa tanaman asli tersebut dimodifikasi agar memperoleh keuntungan yang lebih besar daripada rekan-rekannya dari Negara asalnya, dan setidaknya kita dapat menarik kesimpulan bahwa diversifikasi struktur sebanyak perbedaan genus yang baru akan menguntungkannya. Keuntungan diversifikasi struktur dari penghuni daerah yang sama, sesungguhnya sama dengan pembagian kerja fisiologis organ tubuh individu yan sama.

4. Adaptasi

Adaptasi merupakan struktur atau perilaku yang meningkatkan fungsi organ tertentu, menyebabkan organisme menjadi lebih baik dalam bertahan hidup dan bereproduksi. Ia diakibatkan oleh kombinasi perubahan acak dalam skala kecil pada sifat organisme secara terus menerus yang diikuti oleh seleksi alam varian yang paling cocok terhadap lingkungannya. Proses ini dapat menyebabkan penambahan ciri-ciri baru ataupun kehilangan ciri-ciri leluhur. Contohnya adalah adaptasi bakteri terhadap seleksi antibiotik melalui perubahan genetika yang menyebabkan resistansi antibiotik. Hal ini dapat dicapai dengan mengubah target obat ataupun meningkatkan aktivitas transporter yang memompa obat keluar dari sel. Contoh lainnya adalah bakteri Escherichia coli yang berevolusi menjadi berkemampuan menggunakan asam sitrat sebagai nutrien pada sebuah eksperimen laboratorium jangka panjang, ataupun Flavobacterium yang berhasil menghasilkan enzim yang mengijinkan bakteri-bakteri ini tumbuh di limbah produksi nilon.

Namun, banyak sifat-sifat yang tampaknya merupakan adapatasi sederhana sebenarnya merupakan eksaptasi, yakni struktur yang awalnya beradaptasi untuk fungsi tertentu namun secara kebetulan memiliki fungsi-fungsi lainnya dalam proses evolusi. Contohnya adalah cicak Afrika Holaspis guentheri yang mengembangkan bentuk kepala yang sangat pipih untuk dapat bersembunyi di celah-celah retakan, seperti yang dapat dilihat pada kerabat dekat spesies ini. Namun, pada spesies ini, kepalanya menjadi sangat pipih, sehingga hal ini membantu spesies tersebut meluncur dari pohon ke pohon. Contoh lainnya adalah penggunaan enzim dari glikolisis dan metabolisme xenobiotik sebagai protein struktural yang dinamakan kristalin (crystallin) dalam lensa mata organisme.

 

 

Kerangka paus balin, label a dan b merupakan tulang kaki sirip yang merupakan adaptasi dari tulang kaki depan; sedangkan c mengindikasikan tulang kaki vertigial.

 

 

 

 

 

Ketika adaptasi terjadi melalui modifikasi perlahan pada stuktur yang telah ada, struktur dengan organisasi internal dapat memiliki fungsi yang sangat berbeda pada organisme terkait. Ini merupakan akibat dari stuktur leluhur yang diadaptasikan untuk berfungsi dengan cara yang berbeda. Tulang pada sayap kelelawar sebagai contohnya, secara struktural sama dengan tangan manusia dan sirip anjing laut oleh karena struktur leluhur yang sama yang mempunyai lima jari. Ciri-ciri anatomi idiosinkratik lainnya adalah tulang pada pergelangan panda yang terbentuk menjadi “ibu jari” palsu, mengindikasikan bahwa garis keturunan evolusi suatu organisme dapat membatasi adaptasi apa yang memungkinkan.

Selama adaptasi, beberapa struktur dapat kehilangan fungsi awalnya dan menjadi struktur vestigial. Struktur tersebut dapat memiliki fungsi yang kecil atau sama sekali tidak berfungsi pada spesies sekarang, namun memiliki fungsi yang jelas pada spesies leluhur atau spesies lainnya yang berkerabat dekat. Contohnya meliputi pseudogen, sisa mata yang tidak berfungsi pada ikan gua yang buta, sayap pada burung yang tidak dapat terbang, dan keberadaan tulang pinggul pada ikan paus dan ular. Contoh stuktur vestigial pada manusia meliputi geraham bungsu, tulang ekor, dan umbai cacing (apendiks vermiformis).

Bidang investigasi masa kini pada biologi perkembangan evolusi adalah perkembangan yang berdasarkan adaptasi dan eksaptasi. Riset ini mengalamatkan asal muasal dan evolusi perkembangan embrio, dan bagaimana modifikasi perkembangan dan proses perkembangan ini menghasilkan ciri-ciri yang baru. Kajian pada bidang ini menunjukkan bahwa evolusi dapat mengubah perkembangan dan menghasilkan struktur yang baru, seperti stuktur tulang embrio yang berkembang menjadi rahang pada beberapa hewan daripada menjadi telinga tengah pada mamalia. Adalah mungkin untuk struktur yang telah hilang selama proses evolusi muncul kembali karena perubahan pada perkembangan gen, seperti mutasi pada ayam yang menyebabkan pertumbuhan gigi yang mirip dengan gigi buaya. Adalah semakin jelas bahwa kebanyakan perubahan pada bentuk organisme diakibatkan oleh perubahan pada tingkat dan waktu ekspresi sebuah set kecil gen yang terpelihara.

Beberapa contoh dari adaptasi yang mencolok, dimana proses tersebut untuk menjelaskan proses-proses dari mana adaptasi terwujud.

Kemampuan tumbuh dari tanaman padang rumput

Tahun 1937, Kemp seorang sarjana dari Amerika Serikat mengadakan percobaan tentang kecepatan tumbuh tanaman yang berhubungan dengan adaptasi keadaan setempat. Caranya dengan menaburi dengan biji-bijian ar rumput dan tanaman polong-polongan pda suatu padang rumput di Maryland. Kemudian dibagi menjadi 2 bagian, satu bagian selalu dimakan oleh ternak dan sebagian lagi dibiarkan tanpa di ganggu. Tiga tahun setelah diadakan percobaan itu, Kemp mengambil 3 jenis tanaman dari kedua bagian tersebut. Biji-biji dari dari ketiga macam tanaman tersebut kemudian ditanam pada tanah percoban dimana keadan lingkungan dibuat sesame mungkin untuk ketiga jenis tanaman. Di dapatkan bahwa tanaman yang diperoleh dari padang rumput yang selaludimakan oleh ternak adalah cebol dan tumbuh kesegala jurusan. Sedangkan tanaman dari padang rumput yang tidak diganggu menampakan pertumbuhan yang besar dan tegak lurus.

Dalam waktu tiga tahun, kedua populasi yang terdiri dari jenis-jenis tanaman diketahui berasal dari biji-bijian yang sama telah berbeda dalam cara tumbuhnya. Cara tumbuh ini telah diketahui ditentukan secara genetik. Ternyata ternak pada sebagian padang rumput telah memakan hampir semua tanaman tegak, sedangkan tanaman yang rendah telah lolos dari ternak tersebut. Pada daerah yang dimakan oleh ternak hanya tanaman yang rendah yang dapat terus berbiak dengan bijinya, dalam waktu yang singkat terjadi suatu seleksi kuat untuk tanaman cebol dan tumbuh tidak lurus yang mempunyai adaptabilitas yang tinggi. Sebaliknya pada bagian lain dari tanaman lpang itu, dimana tumbuh tanaman yang tidak diganggu ternak, pertumbuhan tegak lurus secara adaptatif adalah superior dan tanaman cebol tidak akan dapat bersaing secara efektif.

Adaptasi bunga untuk penyerbukan

Tumbuh-tumbuhan berbunga tergantung dari agen diluar untuk membawa tepungsari bunga jantan suatu pohon ke bunga betina pohon lainya. Bunga dari setiap spesies pohon mempunyai adptasi bentuk, struktur warna dan bau untuk agen penyerbuk tergantung. Hal ini memberikan gambaran yang jelas tentang adaptivitas suatu evolusi.

Lebah tertarik oleh warna terang dan oleh bau yang manis, aromatik atau mentol. Mereka hanya aktif pada siang hari dan mereka biasanya  singgah dahulu pada petal sebelum bergerak kedalam bagian bunga yang mengandug madu dan tepung sari. Bunga yang diserbuk oleh lebah mempunyai warna mencolok, suatu petal yang berwarnadan biasanya kuning atau biru, tetapi jarang sekali merah. Lebah tidak dapat melihat warna merh, tetapi dapat melihat warna kuning dan biru dengan baik. Bunga yang biasanya mempunyai bau manis, aromatic atau mentol biasanya membuka pada siang hari dan sering mempunyai bibir yang menonjol dimana lebah dapat hinggap sebelum msuk kedalam bunga. Ada sejenis burung kecil (Hummingbird) pemakan madu,sebaliknya dapat melihat warna merah dengan baik dan warna biru tidak begitu baik. Burung ini tidak hinggap melinkan mengapung diudara sambil menghisap madu, dengan penciuman yang tajam. Bunga-bunga yang terutama yang diserbukan oleh burung ini biasanya tidak berbau dan tidak mempunyai tempt untuk hinggap. Berlainan dengan lebah dan “ Humingbird” kupu-kupu malam sangat aktif pada waktu senja dan malam hari. Bunga-bunga yang diserbuk oleh kupu-kupu malam biasanya berwarna putih dan membuka pada waktu senja atau malam hari. Bunga ini biasanya mempunyai bau yang sangat kuat sehingga dapat menuntun kupu-kupu tadi ketempat itu,

Berbeda-beda dengan contoh-contoh diatas, lalat hanya tertarik pada bau yang tidak enak. Lalt adalah pemakan bangkai,kotoran, humus atau darah. Bunga-bunga yang penyerbukanya tergantung dari lalat biasanya berwarna suram dn berbau tidak enak.  Buga-bunga ini kadang-kadang berbetuk demikian sehingga dapat mengurung lalt sehingga lalat untuk sementara sehingga bila lalat tersebut keluar dari bunga itu, maka tubuhnya telah penuh dengan tepung sari. Tepung sari yang demikian kemudian dapat terbawa kebunga lainya. Mekanisme perangkap ini terdapat pad bunga-bunga yang diserbuk oleh kepik.

 

 

 

 

E. Gene Pool dan Faktor-faktor yang Mempengaruhi Keseimbangan

1. Pengetahuan Gene Pool

 

 

 

 

 

 

 

 

 

 

 

 

Biston betularia hitam

 

 

Dari sudut pandang genetika, evolusi ialah perubahan pada frekuensi alel dalam populasi yang saling berbagi lungkang gen (gene pool) dari generasi yang satu ke generasi yang lain.[51] Sebuah populasi merupakan kelompok individu terlokalisasi yang merupakan spesies yang sama. Sebagai contoh, semua ngengat dengan spesies yang sama yang hidup di sebuah hutan yang terisolasi mewakili sebuah populasi. Sebuah gen tunggal pada populasi ini dapat mempunyai bentuk-bentuk alternatif yang bertanggung jawab terhadap variasi antar fenotipe organisme. Contohnya adalah gen yang bertanggung jawab terhadap warna ngengat mempunyai dua alel: hitam dan putih. Lungkang gen merupakan keseluruhan set alel pada sebuah populasi tunggal, sehingga tiap alel muncul pada lungkang gen beberapa kali. Fraksi gen dalam lungkang gen yang merupakan alel tertentu disebut sebagai frekuensi alel. Evolusi terjadi ketika terdapat perubahan pada frekuensi alel dalam sebuah populasi organisme yang saling berkembangbiak; sebagai contoh alel untuk warna hitam pada populasi ngengat menjadi lebih umum.

Untuk memahami mekanisme yang menyebabkan sebuah populasi berevolusi, adalah sangat berguna untuk memperhatikan kondisi-kondisi apa saja yang diperlukan oleh suatu populasi untuk tidak berevolusi. Asas Hardy-Weinberg menyatakan bahwa frekuensi alel (variasi pada sebuah gen) pada sebuah populasi yang cukup besar akan tetap konstan jika gaya dorong yang terdapat pada populasi tersebut hanyalah penataan ulang alel secara acak selama pembentukan sperma atau sel telur dan kombinasi acak alel sel kelamin ini selama pembuahan. Populasi seperti ini dikatakan sebagai dalam kesetimbangan Hardy-Weinberg dan tidak berevolusi.

 

2. Hukum Hardy-Weinberg

Pada tahun 1908, ahli Matematika Inggris G.H. Hardy dan seorang ahli Fisika Jerman W. Weinberg secara terpisah mengembangkan model matematika yang dapat menerangkan proses pewarisan tanpa mengubah struktur genetika di dalam populasi. Hukum Hardy-Weinberg menyatakan bahwa jumlah frekuensi alel di dalam populasi akan tetap seperti frekuensi awal, dengan beberapa persyaratan yaitu: populasi sangat besar, kawin acak, tidak ada perubahan di dalam unggun gen akibat mutasi, tidak terjadi migrasi individu ke dalam dan ke luar populasi, dan tidak ada seleksi alam (semua genotip mempunyai kesempatan yang sama dalam keberhasilan reproduksi).

Hukum Hardy-Weinberg memberikan standar ideal untuk para ahli genetika untuk membandingkan populasi yang sebenarnya dan mendeteksi perubahan evolusi. Dua hal utama dalam hukum Hardy-Weinberg, yaitu (1) Jika tidak ada gangguan maka frekuensi alel yang berbeda dalam populasi akan cenderung tetap/tidak berubah sepanjang waktu. (2) Dengan tidak adanya faktor pengganggu, maka frekuensi genotipe juga tidak akan berubah setelah generasi I. Hukum ini dapat dilihat misalnya pada populasi siput (Gambar 1) yang dapat melakukan fertilisasi sendiri secara acak (langkah 1). Siput-siput ini memiliki sebagian gen-gen dominan untuk warna cangkang, misalnya biru, kuning, atau hijau. Dengan menganalisis perubahan frekuensi dari gen warna ini dengan persamaan Hardy-Weinberg maka kita akan dapat menentukan apakah populasi siput tersebut berkembang.

Sebagai contoh pada masa revolusi industri di Inggris, kupu-kupu, Biston betularia berwarna terang diperkirakan lebih dari 90%, sedangkan yang berwarna gelap kurang dari 10%. Dengan menggunakan kesetimbangan Hardy-Weinberg, proporsi ini akan terpelihara pada setiap generasi (dengan syarat populasi besar, terjadi kawin acak tanpa perubahan laju mutasi dan migrasi) di dalam lingkungan yang stabil.

Hardy-Weinberg mengemukakan rumus untuk menghitung frekuensi alel dan genotip dalam populasi. Jika di dalam populasi terdapat dua alel pada lokus tunggal, alel dominan D dan alel resesif d, jika frekuensi alel dominan dilambangkan dengan p, dan frekuensi alel resesif dilambangkan dengan q maka p + q = 1. Pada reproduksi seksual, frekuensi setiap macam gamet sama dengan frekuensi alel dalam populasi. Jika gamet berpasangan secara acak, maka peluang frekuensi homozigot DD = p2, peluang frekuensi homozigot dd = q2, dan peluang heterozigot Dd = 2pq, maka p2 + 2pq + q2 = 1.

Dalam populasi besar alami yang tiap individunya memiliki peluang yang sama untuk kawin antar individu dalam populasi tersebut (suatu kondisi yang disebut kawin acak) dan tidak ada faktor-faktor yang dapat mengakibatkan terjadinya perubahan frekuensi genotipe ataupun frekuensi alelnya, maka frekuensi genotipe dan frekuensi alel populasi tersebut akan tetap sepanjang generasi. Populasi dalam keadaan tersebut dinamakan dalam keseimbangan Hardy-Weinberg (dilambangkan sebagai populasi HWeq).

Dalam populasi HWeq, kawin acak berjalan sempurna, sehingga sesuai dengan teori peluang, maka frekuensi genotipe pada generasi berikutnya akan merupakan hasil penggandaan frekuensi alel yang membentuknya. Oleh karena itu bila diketahui frekuensi alel suatu populasi dengan model diploid adalah p dan q, maka frekuensi genotipe homozigot dominan (P), homozigot resesif (Q) dan heterozigot (H) pada generasi berikutnya adalah : P’ = p2, Q’ = q2, H’ = 2pq, di mana P’+Q’+H’ = 1. Bila tidak ada keterpautan (linkage), kondisi HWeq akan tercapai setelah satu kali kawin acak. Konstitusi genetik populasi setelah HWeq tercapai tidak akan berubah sepanjang generasi selama faktor-faktor pengubah frekuensi alel tidak bekerja, atau tidak ada migrasi, mutasi, dan seleksi. Perlu diperhatikan bahwa yang menentukan konstitusi genetik populasi HWeq adalah frekuensi alelnya, bukan frekuensi genotipe tetua.

 

 

 

 

 

Gambar Prinsip Hardy-Weinberg

 

Hukum hardy-Weinberg menyatakan bahwa keseimbangan frekeunsi genitif Aa, Aa, aa serta perbandingan gen A dan a dari genersi ke generasi akan selalu sama, apabila  :

–      populasi harus cukup besar suaya tidak mungkin memberi peluang untuk mengubah secara sendirian frekuensi gen

–      tidak terjadi mutasi

–      tidak terjadi migrasi, baik keluar maupun masuk

–      tidak terjadi seleksi alam

–      perkawinan terjadi secara acak atau random

–      reproduksi berlangsung sukses dan secara acak

Hukum Hardy-Weinberg, dapat dirumuskan sebagai berikut  :   p2 +  2  pq  +  q2 =   1

Apabila frekuensi alel adalah 0,9 untuk  p  dan 0.1 untuk  q , maka persamaannya adalah sebagai berikut  :

p2 +  2  pq  +  q2 =   1

(0,9)(0,9)      +  2 (0,9)(0,9)       +  (0,1)(0,1)           =  1

0,81              +      0,18                 +        0,01              =  1

Dari rumus Hardy –Weinberg menunjukan frekuensi dari tiga genotif, yaitu  :

p2 =  frekuensi dar  A/A            =  0,81

2 pq                 =  frekuensi dari A/a              =  0,18

q2 =  frekuensi dari  a/a              =  0,01

Untuk lebih memahami hukum  Hardy-Weinberg, perhatikan soal berikut. Dalam masyarakat, frekuensi orang yang menderita albino adalah   1  :  10.000.  Berapa prosentase orang normal  ?

p  =  normal

q  =  albino

Orang albino bergenotif       aa     =      q2 =

q2 =

=   0,01

p  +  q      =   1

p              =   1  –  0,01

=   0,99

Orang normal heterozigot begenotif  Aa memiliki  frekuensi  2 pq         =  2 x  0,99  x  0,01

=  0,0198

=  0,0198  x  100%

=  1,08%

 

Orang normal hompzigot bergenotif     AA                   =   p2

=  (0,99)2

=  0,9801

=  0,9801  x  100%

=  98,01%

  1. 4. Kondisi yang Diperlukan untuk Keseimbangan Genetik

Perlu diteliti apakah yang dimaksud dengan kondisi pada hokum Hardy-Weinberg, sehingga menyebabkan gen pool dari suatu populasi berada didalam kesetimbangan genetis. Kondisi tersebut digambarkan sebagai berikut:

  • Populasi harus cukup besar, sehingga suatu factor kebetulan saja tidak mungkin mengubah frekuensi genetis secara berarti
  • Mutasi tidak boleh terjadi, atau harus terjadi kesetimbagna secara mutasi.
  • Harus tidak terjadi emigrasi dan imigrasi.
  • Reproduksi harus sama sekali random.

Secara teoritis, suatu populasi harus begitu besar sehingga dapat dianggap bukan merupakan factor penyebab dari perubahan frekuensi genetis. Dalam kenyataan, tidaklah ada populasi yang besarnya tidak terbatas, tetapi beberapa populasi alami dapat cukup besar sehingga perubahan sedikit saja tidak cukup menjadi penyebab dari perubahan yang berarti pada frekuensi genetis gene pool mereka.

Suatu populasi produktif yang terdiri lebih dari 10.000 anggota yang dapat berbiak, mempunyai kemungkinan besar tidak dipengaruhi secara berarti oleh perubahan sembarang. Tetapi frekuensi genetis pada suatu populasi kecil yang terisolasi, misalnya kurang dari 100 anggota yang dapat, sangat mudah untuk terkena flutuasi sebarang, yang dapat menuju kepada lenyapnya suatu alel dari gene pool, meskipun alel itu merupakan alel superior. Di dalam populasi yang demikian, ternyata hanya terdapat sangat kecil alel yang mempunyai alel superior. Di dalam populasi yang demikian, ternyata hanya sangat kecil alel yang mempunyai frekuensi antara, rupanya semua alel itu mempunyai kecendrungan untuk hilang dengan segera atau tertahan sebagai satu-satunya alel yang ada. Dengan perkataan lain, populasi kecil mempunyai kecendrungan besar untuk menjadi homozigotik, sedangkan populasi besar cenderung untuk lebih bermacam-macam.

Jadi suatu kesempatan dapat menyebabkan perubahan evolusi di dalam populasi kecil, tetapi perubahan ini kadang-kadang disebut juga dengan genetic drift atau pergeseran genetis tidak dipengaruhi secara besar oleh adaptivitas relative dari berbagai gen. Hal ini disebut sebagai evolusi pertengahan. Syarat kedua bagi kesetimbangan mutasi mungkin tidak dijumpai pada suatu populasi.

Mutasi selalu terjadi, tidak ada satu cara apapun untuk dapat mencegahnya. Hampir semua gen mungkin mengalami mutasi sekali pada 50.000 sampai 10.000 pembelahan, kecepatan mutasi bagi berbagai gen berbeda. Sangat jarang mutasi alel dengan sifat sama dapat sampai mencapai kesetimbangan. Jadi jumlah mutasi maju jarang sekali sama dengan mutasi balik di dalam suatu kesatuan waktu. Contoh: mutasi alel A ke allele a adalah mutasi maju, sedangkan mutasi dari a ke A adalah mutasi mundur.

Kecepatan dari kedua mutasi ini jarang sekali akan terjadi dalam keadaan yang sama-sama betul sama, salah satu mutasi yang akan terjadi lebih sering tekanan mutasi ini akan cenderung untuk menyebabkan pergeseran perlahan-lahan pada frekuensi genetis di dalam populasi. Alel yang lebih stabil akan cenderung untuk bertambah frekuensinya, sedangkan alel yang mudah bermutasi akan cenderung untuk berkurang frekuensinya, kecuali kalau ada factor lain yang mengubah tekanan mutasi ini. Meskipun tekanan mutasi selalu ada, tetapi mungkin sekali bahwa ini merupakan factor utama yang dapat menghasilkan perubahan pada frekunsi genetis di dalam suatu populasi. Mutasi berjalan begitu lambat sekali untuk menimbulkan suatu perubahan nyata (kecuali dalam hal poliploidi). Mutasi terjadi secara random dan seringkali cenderung untuk mengarah pada jurusan yang berbeda dari factor-faktor lain yang menyebabkan organism sesungguhnya harus berevolusi.

Kalau gene pool harus di dalam keadaan seimbang, sudah barang tentu imigrasi dari populasi lain tidak boleh terjadi kalau hal ini akan menyebabkan terjadinya pemasukan gen baru. Hilangnya gene pool secara emigrasi harus tidak boleh terjadi. Sebagian besar populasi alami mungkin paling sedikit mengalami migrasi genetis di dalam jumlah yang sangat kecil, dan factor ini  menambah terjadinya variasi yang cenderung untuk megacaukan keseimbangan Hardy-Weinberg. Sangat disangsikan akan adanya suatu populasi yang bebas dari migrasi genetis dan pada beberapa kejadian dimana migrasi genetis terjadi, hal ini terjadi begitu kecil sehingga dapat diabaikan sebagai factor yang menyebabkan pergeseran frekuensi genetis. Itulah sebabnya dapat kita simpulkan bahwa syarat ketiga untuk keseimbangan genetis kadang-kadang di alam.

Kondisi untuk keseimbangan genetis di dalam populasi adalah perkembang biakan atau reproduksi yang random. Reproduksi atau perkembang biakan tidak hanya bertanggung jawab atas kelangsungan reproduksi dari populasi. Seleksi pasangan, efisiensi dan frekuensi proses perkawinan, fertilisasi, jumlah zigot yang terjadi pada setiap perkawinan, prosentase zigot yang menuju ke arah pertumbuhan embrio dan kelahiran berhasil, kemampuan hidup keturunan sampai mencapai umur untuk berbiak. Hal tersebut mempunyai pengaruh langsung pada keturunannya dalam arti keselamatannya atau efisiensi dari reproduksi. Bila reproduksi merupakan sesuatu yang sama sekali random, maka semua factor yang mempengaruhi harus random, yakni tidak tergantung pada genotip.

Reproduksi tidak sembarang (non random) adalah hokum umum. Reproduksi di dalam arti luas adalah seleksi alam. Jadi seleksi selalu bekerja pada semua populasi. Sehingga kalau kita simpulkan, 4 kondisi yang diperlukan untuk keseimbangan genetis yang diusulkan oleh hokum Hardy-Weinberg adalah:

  • Ditemukan pada populasi besar
  • Tidak pernah dijumpai mutasi
  • Tanpa migrasi
  • Reproduksi random tidak pernah dijumpai.

  1. 5. Peranan Seleksi Alam

Perubahan-perubahan pada frekuensi dan gen tiap individu juga disebabkan oleh seleksi alam. Pada populasi hipotesis yang telah kita singgung di depan mempunyai frekuensi permulaan alel A dan a, yakni 0,9 dan 0,1; dan frekuensi genotip 0,91 dan 0,01. Frekuensi ini tidak dapat berubah secara otomatis dengan perkembangan waktu dan perubahan itu hanya akan terjadi bila ada sesuatu yang mengubah keseimbangan genetis. Kita lihat bahwa tekanan mutasi sampai suatu batas kecil, dan tekanan seleksi sampai batas besar, akan selalu menggangu keseimbangan genetis dari populasi. Misalnya, seleksi alam bekerja terhadap fenotip dominan pada contoh kita diatas, dan bahwa seleksi ini memberikan tekanan negative yang dapat mengubah A dari 0,9 menjadi 0,8 sebelum terjadi reproduksi. Tentunya terjadi penambahan frekuensi a dari 0,1 menjadi 0,2; sebab jumlah kedua frekuensi harus 1.

Hal tersebut dapat kita hitung dengan PunnetSquare, perbandingan genotip pada generasi kedua:

Telur Sperma
0,8A 0,2A
0,8A 0,64AA 0,16Aa
0,2a 0,16Aa 0,04aa

 

Kita dapati bahwa perbandingan genotip dari generasi kedua berbeda dengan yang kita dapatkan pada generasi orang tua. Perbandingan yang baru dari 0,81;0,18 dan 0,01 menjadi 0,64;0,32 dan 0,04. Seandainya seleksi alam mengurangi lagi frekuensi A, perbandingan genotip pada generasi ketiga akan berbeda dengan yang ada pada generasi sebelumnya, yakni frekuensi AA menjadi lebih rendah dan aa menjadi lebih tinggi. Kalau tekanan ini bekerja secara terus menerus dari generasi ke generasi, maka frekuensi AA akan turun menjadi sangat rendah dan aa menjadi lebih tinggi. Jadi seleksi alam akan menyebabkan suatu perubahan dari suatu populasi dimana 99% dari individu menunjukan fenotip dominan dan banyak sekali fenotip resesif. Perubahan secara evolusi dari fenotip ini akan berlangsung tanpa dibutuhkannya adanya mutsi, tetapi hanya sebagai hasil dari seleksi alam.

Sekarang kita tinjau pda situasi nyata bukan hanya pada populasi secara hipotesis. Setelah ditemukan daya antibiotik dari penisilin, kemudian diketahui pula bahwa suatu bakteri yang disebut Staphylococcus aureus dapat dengan cepat tumbuh resistensi terhadap antibiotic tertentu, akan dibutuhkan dosis yang lebih tinggi lagi untuk membunuh bakteri tersebut. Jadi nyatalah bahwa di bawah pengaruh seleksi penisilin yang kuat, maka populasi bakteri mengalami perubahan secara evolusi. Fenomena ini telah diselidiki secara mendalam di laboratorium secara eksperimental. Pada eksperimen tersebut menunjukan, kultur dan berjuta-juta bakteri mati, dan hanya beberapa yang dapat hidup terus. Kalau sisa bakteri yang hidup ini dikenai penisilin dari dosis yang sama, maka hampir semua bakteri akan hidup.

Gen untuk kekebalan mungkin telah ada pada populasi sebelum percobaan di atas dimulai, dan antibiotik hanyalah membunuh semua bakteri yang tidak mempunyai gen ini, yang ditinggalkan hanyalah bakteri yang mempunyai gen kekebalan. Dengan perkataan lain, penissilin mungkin hanya melakukan suatu tekanan seleksi yang kuat terhadap gen yang tidak kebal, sehingga menyebabkan adanya pergeseran besar pada frekuensi tersebut.

Dari beberapa percobaan diketahui bahwa keterangan pertama rupanya benar. Obat ini tidak menyebabkan adanya mutasi untuk kekebalan, hanya mengadakan seleksi terhadap bakteri yang tidak kebal. Beberapa gen yang menentukan jalan metabolism yang menyebabkan resistensi terhadap penissilin sudah ada di dalam kebanyakan populasi pada frekuensi rendah yang muncul mula-mula sekali sebagai hasil mutasi sebarang. Seandainya gen semacam itu belum ada pada populasi yang terkena penissilin, tidak akan ada sel dari populasi yang dapat hidup dan populasi tersebut akan tersapu bersih.

Hal tersebut di atas, tidak berarti bahwa mutasi baru tidak dapat memperbaiki kekebalan; malahan seleksi terus menerus oleh penissilin biasnaya menuju ke arah penambahan resistensi secra gradual. Hal ini sudah hampir dipastikan sebagai hasil dari mutasi. Tetapi mutasi tidak dihasilkan oleh kondisi sama yang menyeleksi gen mutan yang timbul.

Keuntungan mutasi pada suatu keadaan keliling yang mengandung penissilin dapat timbul sewaktu obat itu dimasukkan sebagai hal yang terjadi secara kebetulan. Sebab mutasi yang serupa dapat juga timbul meskipun penissilin tidak ada. Evolusi resistensi obat pada bakteri tidak dapat dipersamakan seluruhnya pada evolusi organisme biparental, sebab seleksi yang hebat dapat mengubah frekuensi genetis lebih cepat pada organisme haploid aseksual daripada organisme biparental.

Rekombinasi yang terjadi pada setiap generasi pada spesies biparental sering menimbulkan kembali genotip yang hilang pada generasi sebelumnya. Hal ini tidak akan terjadi pada organisme aseksual. Tetapi bagaimanapun juga, suatu tekanan seleksi yang sangat kecil dapat menimbulkan suatu pergeseran besar frekuensi gen suatu populasi biparental kalau jangka waktunya mencapai 50.000 tahun (meskipun waktu ini relative sangat pendek). Hal tersebut pernah diperhitungkan Haldane bahwa jika suatu alel dominan yang memperkuat suatu individu di bawa oleh 1 bagian dari 1.000, misalnya 1.000 individu dari AA yangd apat hidup dan berbiak untuk alel dominan dapat bertambah dari 0,00001 sampai 0,99 hanya selama 23.400 generasi. Dengan perkataan lain, tekanan seleksi yang hanya 0,01 dapat menyebabkan suatu alel yang sangat jarang menjadi sangat umum selama 23.400 generasi.

Perkataan “hanya” seolah-olah sangat dilebih-lebihkan. Tetapi kita perlu menyadari bahwa beberapa tanaman dan binatang mempunyai paling sedikit satu generasi setiap tahun, dan pada beberapa spesies waktu generasi lebih dari 10 tahun. Jadi 23.400 generasi seringkali berarti kurang dari 23.400 tahun dan jarang sekali lebih dari 23.400 tahun. Kedua waktu ini sangat pendek jika dibandingkan dengan jangka waktu biologis. Malahan tekanan suatu seleksi serendah 0,0001 (1 bagian di dalam 10.000)  akan merupakan faktor utama di dalam suatu populais yang terdiri dari lebih 5.000 individu dalam waktu yang telah kita sebutkan di atas.

 

F. Masalah dan Kontroversi

1. Organisasi Seluler dan Asal-usul Kode Genetika Suatu Teka-teki Ilmiah

Kita mengetahui bahwa organisasi sel berfungsi sesuai dengan kode gentik, tetapi asal-usul system perintah ini tetap merupakan suatu teka-teki.

Dalam hal sel manusia, pita DNA 1.000 kali lebih panjang. Sistemnya jauh lebih kompleks, bagaimanapun juga, disbanding yang dinyatakan oleh angka ini, sebab sementara bakteri itu terdiri atas satu unsure kehidupan, manusia terdiri atas sejumlah besar sel. Fungsi-fungsi sel-sel tersebut dikoordinasikan oleh system-sistem pengatur yang banyak sekali, yang mempengaruhi seluruh unsure pembentuk badan manusia. Jika disatukan, sel-sel manusia itu mengandung satu pita DNA, di situ gen-gen manusia tercatat, yang kira-kira sama panjangnya dengan jarak antara bumi dan matahari. Bagi setiap manusia, hal ini mewakili massa informasi yang besar. Sebagaimana telah disebutkan sebelumnya di, satu sel manusia mengandung bayak sekali data seluler yang terungkapkan oleh gen-gen yang terdapat di dalam sekitar satu meter pita DNA untuk setiap sel.

Kita karenanya dihadang oleh dua pertanyaan:

1)      Bagaimana bisa organisasi yang paling sederhana (atau yang hampir bisa dikatakan sebagai yang paling sederhana, sepanjang menyangkut bakteri) menyuguhkan massa informasi yang begitu besar dengan mengatur setiap fungsi, termasuk reproduksi? Hal ini mendorong timbulnya pertanyaan-pertanyaan mengenai asal-usul kode genetik dalam diri makhluk-makhluk yang paling elementer.

2)      Bagaimana bisa kode genetik, yang berkisar dari bakteri sampai manusia, menjadi begitu kaya akan informasi? Sebab dengan meningkatkan suatu organisme hidup yang baru, dan dengan demikian mengetengahkan suatu modifikasi dalam perbandingan dengan makhluk yang mendahuluinya, kode genetic harus memiliki informasi baru yang diperlukan guna melahirkan individu yang menunjukkan sedikit ketidaksamaan jika dibandingkan dengan pendahulunya. Jelas sangat sulit untuk membayangkan bahwa organisme hidup yang paling sederhana dapat memiliki seluruh gen yang selanjutnya disebarkan ke segenap spesies hewan. Evolusi dalam dunia hewan pasti telah terjadi bersamaan dengan terciptanya gen-gen baru. Gen-gen baru ini mengatur fungsi-fungsi yang menjadi semakin kompleks dalam skala hewan. Mereka mengatur organisasi anatomis dan fungsional seluruh makhluk hidup.

Penyusunan kode genetik bagi makhluk-makhluk yang paling primitive tetap merupakan suatu teka-teki ilmiah. Begitu juga semakin kayanya kode itu melalui pengetahuan gen-gen baru, suatu proses yang sangat penting bagi spesies, yang menyangkut jumlah gen yang lebih besar lagidalam skala hewan. Kegagalan ilmu untuk menjawab teka-teki di atas memindahkan tekanan telaah kita dari yang bersifat material ke yang bersifat metafisis.

Dalam hubungan ini, mereka yang percaya pada Tuhan lebih dari rela untuk mengemukakan adanya campur tangan dari kemampuan-Nya untuk mencipta. Ilmu sendiri telah menunjukkan bahwa teori mengenai pengaruh kreatif, yang bergerak dalam aturan yang ketat dalam evolusi, sangat bersesuaian dengan penemuan-penemuan material.

Pertanyaan-pertanyaan yang mungkin akan diajukan oleh setiap orang yang bisa berpikir mengenai asal-usul organisasi sel yang luar biasa kompleksnya itu akan mendapatkan jawaban dalam penemuan-penemuan ilmiah yang sama. Biologi molekuler telah menunjukkan banyak sekali kemampuan untuk menghasilkan protei yang dimiliki oleh sel manusia. Melalui informasi genetik yang dikandungnya, nucleus mengontrol seluruh fungsi ini.

Sekali lagi, kita menghadapi teka-teki yang sama, yang melahirkan pertanyaan-pertanyaan yang sama dan ini semua pada gilirannya menyuguhkan jawaban-jawaban yang sama.

2. Evolusi Makhluk-makhluk Hidup Suatu Masalah Khusus dalam Evolusi Umum di   Alam Raya.

Persamaan-persaman mungkin dapat ditarik secara jelas, antara data dari kitab-kitab suci dan pengetahuan modern. Kerangka luas evolusi umum di alam raya, yang sekarang bisa disimpulkan dari ajaran-ajaran agama jika ditelaah secara keseluruhan, dan dari data pengetahuan secular, menunjuk pada suatu kemajuan yang tepat. Kemajuan yang tetap ini secara lambat laun bergerak menuju kompleksitas struktur yang semakin meningkat, berkisar dari nebula primer sampai bimasakti, bintang-bintang dan planet-planet, dengan suatu evolusi yang berakhir dalam kematian; hal ini telah dibuktikan oleh ilmu pada benda-benda angkasa tertentu yang sangat jauh jaraknya, dan juga telah diramalkan di dalam kitab-kitab suci yang menyangkut berbagai benda lain yang menjadi bagian tata surya tempat kita hidup.

Evolusi makhluk hidup mengikti kerangka luas yang sama dari perkembangan menuju suatu jumlah varietas yang lebih besar sejalan dengan meningkatnya kompleksitas structural yang disebut oleh Romo Teilhard Chardin termasuk penghentian dalam evolusi itu, dan lenyapnya keturunan tertentu. Sejak manusia pertama muncul di muka bumi, telah timbul perubahan-perubahan evolusioner dalam morfologinya; evolusi ini disebutkan di dalam kitab-kitab suci dan tampak jelas dari sisa-sisa yang ditemukan di dalam tanah-tanah kuno. Sepanjang menyangkut dunia kehidupan, semakin kayanya informasi genetic telah menentukan berlangsungnya transformasi-trasnformasi ini. Dari bakteri sampai manusia informasi terkumpul sampai pada tingkat yang sangat tinggi di dalam sel, yang mengatur dalam urutan yang sangat ketat perubahan-perubahan yang terjadi sejalan dengan berllunya waktu.

 

3. Kesesuaian Antara Agama dan Ilmu

Gagasan-gagasan yang terbentuk sebelumnya mengenai agama-agama pada umumnya mengemukakan bahwa mereka yang menyatakan diri sebagai bagian dari suatu komunitas agama tidak akan mampu mengungkapkan diri mereka sendiri dengan cara yang sesuai dengan suatu keyakinan sederhana. Cukup wajar bila mereka tidak dapat melahirkan bukti ilmiah untuk mendukung pendapat-pendapat mereka. Oleh sebab itu orang-orang semacam itu selalu berangagpan bahwa, sepanjang menyangkut agama, tidak mungkin ada pernyatan-pernyatan yang terbuka bagi penilaian manusia yang didasarkan atas logika.

Dalam hubungan ini, kesesuaian dasar antara agama dan ilmu lahir dengan sendirinya. Meskipun selama berabad-abad berbagai kesulitan dihadapi oleh umat beragama baik Kristen maupun islam. Dalam keadaan semacam ini, sanggahan-sanggahan terhadap teori-teori pengikut Darwin menyangkut perkiraan bahwa asal-usul manusia dari keluarga monyet mungkin dapat ditangkis dengan argument-argumen yang lebih kuat.

Dalam perbandingan antara ajaran-ajaran agama dan data-data ilmiah ini, suatu kesesuaian sungguh-sungguh telah timbul, yang secara tegas menghapuskan pertentangan-pertentangan panas masa lampau. Hal ini menunjukan bahwa penyelidikan atas suatu subyek seperti yang telah ditelaah menjadi lebih jelas bila orang-orang mengesampingkan hipotesis-hipotesis ideologis dan, sebagai criteria mereka satu-satunya, menggantungkan diri pada fakta-fakta yang nyata, kesimpulan logis dan kekuatan akal.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BAB III

PENUTUP

–  Kesimpulan

  • Variasi, istilah yang digunakan dalam ilmu genetika, merujuk pada peristiwa genetis yang menyebabkan individu atau kelompok spesies tertentu memiliki karakteristik berbeda satu sama lain. Sebagai contoh, pada dasarnya semua orang di bumi membawa informasi genetis sama. Namun ada yang bermata sipit, berambut merah, berhidung mancung, atau ber-tubuh pendek, tergantung pada potensi variasi informasi genetisnya. Evolusionis menyebut variasi dalam suatu spesies sebagai bukti kebenaran teorinya. Namun, variasi bukanlah bukti evolusi, karena variasi hanya hasil aneka kombinasi informasi genetis yang sudah ada, dan tidak menambahkan karakteristik baru pada informasi genetis. Jadi ada beberapa pendapat mengenai masalah variasi ini
  • Mutasi gen, frekuensi gen dalam populasi, dan hukum Hardy Weinberg sangat berperan dalam proses evolusi karena semuanya menunjukan bukti akan adanya evolusi

– Saran

  • Kepada masyarakat terutama masyarakat awam agar lebih mempelajari lagi evolusi karena tidak semua materi dari evolusi melanggar perintah agama.
  • Kepada semua kaum akademik agar lebih meningkatkan pengenalan evolusi kepada masyarakat agar stigma buruk mengenai evolusi lama kelamaan akan terhapus.

DAFTAR PUSTAKA

Bucaille, M. 1998. Asal-usul Manusia Menurut Bibel, Al Quran dan Sains. Mizan: Jakarta

Bucaille, M. 2003. God After Than, Tuhan Sesudah Darwin. Mizan: Jakarta

Coichen, Russel. 1987. Primate Evolution and Human Origins. Aldine Transaction: New York

Coray, Michael. 2000. Evolution and The Problem Of Natural Evil. Rowman and Littlefiedd. Boston.

Darwin, Charless. 2002. The Origin Of Spesies Asal-usul Spesies. Ikon Teralitera. Yogyakarta

Fabian, A.C. 1998. Evolution: Society, Science, and The Universe. Cambridge University Pers. Cambridge.

Graebner, Theodore. 2008. Evolution. BiblioBazaar. Wahington DC.

Mayr, Ernst. 2002. What Evolutions. Basic Books: California

Ridley, Mark. 2004. Evolution. Wiley-Blackwell. Maldem, USA.

Waluyo, Lud. 2005. Evolusi Organik. UMM Press. Malang.

Wells, Jonathan. 2002. Icons of Evolution Science or Myth? Why Much of What We Teach About Evolution Is Wrong. Regnery Publishing. Washington DC.

Zimmer, Carl. 2002. Evolution: The Trumph of An Idea. Harpercollins. New York

 

 

 

11/15/2009 Posted by | Evolusi Organik | Tinggalkan komentar