BIOLOGI ONLINE

blog pendidikan biologi

EKSPRESI GEN

 

BAB X

EKSPRESI GEN

  • Dogma Sentral Genetika Molekuler
  • Perkembangan Konsep tentang Gen
  • Transkripsi
  • Tiga Macam RNA
  • Translasi, khususnya pada Prokariot
  • Kode Genetik
  • Mekanisme Pengaturan Ekspresi Gen pada Prokariot
  • Mekanisme Pengaturan Ekspresi Gen pada Eukariot

 

BAB X. EKSPRESI GEN

Pada Bab IX telah disebutkan bahwa salah satu fungsi dasar yang harus dijalankan oleh DNA sebagai materi genetik adalah fungsi fenotipik. Artinya, DNA harus mampu mengatur pertumbuhan dan diferensiasi individu organisme sehingga dihasilkan suatu fenotipe tertentu.

Fenotipe organisme sangat ditentukan oleh hasil interaksi protein-protein di dalam sel. Setiap protein tersusun dari sejumlah asam amino dengan urutan tertentu, dan setiap asam amino pembentukannya disandi (dikode) oleh urutan basa nitrogen di dalam molekul DNA. Rangkaian proses ini, mulai dari DNA hingga terbentuknya asam amino, dikenal sebagai dogma sentral genetika molekuler.

 

DNA                          RNA                           asam amino

replikasi      transkripsi                  translasi

Gambar 10.1. Diagram dogma sentral genetika molekuler

Perubahan urutan basa di dalam molekul DNA menjadi urutan basa molekul RNA dinamakan transkripsi, sedangkan penerjemahan urutan basa RNA menjadi urutan asam amino suatu protein dinamakan translasi. Jadi, proses tanskripsi dan translasi dapat dilihat sebagai tahap-tahap ekspresi urutan basa DNA. Namun, tidak semua urutan basa DNA akan diekspresikan menjadi urutan asam amino. Urutan basa DNA yang pada akhirnya menyandi urutan asam amino disebut sebagai gen. Dengan demikian, secara kimia gen adalah urutan basa nitrogen tertentu pada molekul DNA yang dapat dieskpresikan melalui tahap-tahap transkripsi dan translasi menjadi urutan asam amino tertentu.

Di atas telah kita katakan bahwa sejumlah asam amino dengan urutan (sekuens) tertentu akan menyusun sebuah molekul protein. Namun, setiap molekul protein sendiri dapat dilihat sebagai gabungan beberapa subunit yang dinamakan polipeptida. Oleh karena itu, muncul pertanyaan tentang hakekat sebuah gen : tiap gen menyandi satu protein ataukah tiap gen menyandi satu polipeptida ?

Perkembangan konsep tentang gen dapat diikuti semenjak awal abad ke-20 ketika seorang dokter sekaligus ahli biokimia dari Inggris, Sir Archibald E. Garrod, mengajukan konsep satu gen mutan – satu hambatan metabolisme. Garrod mempelajari sejumlah penyakit metabolik bawaan pada manusia dan menyimpulkan bahwa setiap gangguan metabolisme bawaan yang menimbulkan penyakit tertentu, misalnya alkaptonuria,  disebabkan oleh satu gen mutan resesif.

Sekitar 50 tahun kemudian dua orang peneliti, G. W. Beadle dan E.L. Tatum, mempelajari mutasi gen pada jamur Neurospora crassa dengan menumbuhkan berbagai strain mutan hasil iradiasi menggunakan sinar X atau sinar ultraviolet pada medium lengkap dan medium minimal. Medium minimal adalah medium untuk pertumbuhan mikroorganisme yang hanya mengandung garam-garam anorganik, sebuah gula sederhana, dan satu macam vitamin. Mutan yang digunakan adalah mutan dengan hanya satu kelainan, yang untuk mendapatkannya dilakukan silang balik dengan strain tipe liar. Mutan hasil silang balik dengan nisbah keturunan tipe liar : mutan = 1 : 1 dipastikan sebagai mutan dengan hanya satu kelainan (mutasi).

Strain tipe liar, sebagai kontrol, mampu tumbuh baik pada medium lengkap maupun pada medium minimal, sedangkan strain mutan hanya mampu tumbuh pada medium lengkap. Strain-strain mutan ini kemudian dianalisis lebih lanjut untuk mengetahui macam faktor pertumbuhan yang diperlukannya dengan cara melakukan variasi penambahannya ke dalam medium minimal. Sebagai contoh, mutan yang hanya tumbuh pada medium minimal yang ditambah dengan tiamin adalah mutan yang mengalami mutasi pada gen untuk biosintesis tiamin. Dengan cara seperti ini Beadle dan Tatum memperlihatkan bahwa tiap mutasi menyebabkan kebutuhan akan pemberian satu macam faktor pertumbuhan. Selanjutnya, dengan mengorelasikan hasil analisis genetik dengan hasil analisis biokimia terhadap strain-strain mutan Neurospora tersebut dapat diketahui bahwa tiap mutasi menyebabkan hilangnya satu aktivitas enzim. Maka, konsep satu gen mutan – satu hambatan metabolisme bergeser menjadi satu gen – satu enzim.

Dalam perkembangan berikutnya, setelah diketahui bahwa sebagian besar enzim tersusun dari beberapa polipetida, dan masing-masing polipeptida merupakan produk gen yang berbeda, maka konsep terbaru tentang gen yang dianut hingga kini adalah satu gen – satu polipeptida. Sebagai contoh, enzim triptofan sintetase pada Escherichia coli terdiri atas dua buah polipeptida, yaitu polipeptida α dan polipeptida β. Polipeptida α merupakan produk gen trpA, sedangkan polipeptida β merupakan produk gen trpB.

 

sinarX atau sinar uv

 

 

 

spora seksual

konidia

tipe liar                       silang balik                     medium lengkap          medium minimal

 

 

 

 

 

 

riboflavin    piridoksin       tiamin       asam pantotenat      niasin           inositol                kholin        asam folat    asam nukleat

Gambar 10.2. Diagram percobaan yang memperlihatkan satu gen – satu enzim

Transkripsi

Tahap pertama ekspresi gen adalah transkripsi atau sintesis molekul RNA dari DNA (gen). Sintesis RNA mempunyai ciri-ciri kimiawi yang serupa dengan sintesis DNA, yaitu

  1. Adanya sumber basa nitrogen berupa nukleosida trifosfat. Bedanya dengan sumber basa untuk DNA hanyalah pada molekul gula pentosanya yang tidak berupa deoksiribosa tetapi ribosa dan tidak adanya basa timin tetapi tetapi digantikan oleh urasil. Jadi, keempat nukleosida trifosfat yang diperlukan adalah adenosin trifosfat (ATP), guanosin trifosfat (GTP), sitidin trifosfat (CTP), dan uridin trifosfat (UTP).
  2. Adanya molekul cetakan berupa untai DNA. Dalam hal ini hanya salah satu di antara kedua untai DNA yang akan berfungsi sebagai cetakan bagi sintesis molekul RNA. Untai DNA ini mempunyai urutan basa yang komplementer dengan urutan basa RNA hasil transkripsinya, dan disebut sebagai pita antisens. Sementara itu, untai DNA pasangannya, yang mempunyai urutan basa sama dengan urutan basa RNA, disebut sebagai pita sens. Meskipun demikian, sebenarnya transkripsi pada umumnya tidak terjadi pada urutan basa di sepanjang salah satu untai DNA. Jadi, bisa saja urutan basa yang ditranskripsi terdapat berselang-seling di antara kedua untai DNA.
  3. Sintesis berlangsung dengan arah 5’→ 3’ seperti halnya arah sintesis DNA.
  4. Gugus 3’- OH pada suatu nukleotida bereaksi dengan gugus 5’- trifosfat pada nukleotida berikutnya menghasilkan ikatan fosofodiester dengan membebaskan dua atom pirofosfat anorganik (PPi). Reaksi ini jelas sama dengan reaksi polimerisasi DNA. Hanya saja enzim yang bekerja bukannya DNA polimerase, melainkan RNA polimerase. Perbedaan yang sangat nyata di antara kedua enzim ini terletak pada kemampuan enzim RNA polimerase untuk melakukan inisiasi sintesis RNA tanpa adanya molekul primer.

Tahap-tahap transkripsi

Transkripsi berlangsung dalam empat tahap, yaitu pengenalan promoter, inisiasi, elongasi, dan teminasi. Masing-masing akan dijelaskan sebagai berikut.

  1. Enzim RNA polimerase mengikat untai DNA cetakan pada suatu daerah yang mempunyai urutan basa tertentu sepanjang 20 hingga 200 basa. Daerah ini dinamakan promoter. Baik pada prokariot maupun eukariot, promoter selalu membawa suatu urutan basa yang tetap atau hampir tetap sehingga urutan ini dikatakan sebagai urutan konsensus. Pada prokariot urutan konsensusnya adalah TATAAT dan disebut kotak Pribnow, sedangkan pada eukariot urutan konsensusnya adalah TATAAAT dan disebut kotak TATA. Urutan konsensus akan menunjukkan kepada RNA polimerase tempat dimulainya sintesis. Kekuatan pengikatan RNA polimerase oleh promoter yang berbeda sangat bervariasi. Hal ini mengakibatkan perbedaan kekuatan ekspresi gen.
  2. Setelah mengalami pengikatan oleh promoter, RNA polimerase akan terikat pada suatu tempat di dekat daerah promoter, yang dinamakan tempat awal polimerisasi.  Nukleosida trifosfat pertama akan diletakkan di tempat ini dan sintesis RNA pun segera dimulai.
  3. Selama sintesis RNA berlangsung RNA polimerase bergerak di sepanjang molekul DNA cetakan sambil menambahkan nukleotida demi nukleotida kepada untai RNA yang sedang diperpanjang.
  4. Molekul RNA yang baru saja selesai disintesis, dan juga enzim RNA polimerase, segera terlepas dari untai DNA cetakan begitu enzim tersebut mencapai urutan basa pengakhir (terminasi). Terminasi dapat terjadi oleh dua macam sebab, yaitu terminasi yang hanya bergantung kepada urutan basa cetakan (disebut terminasi diri) dan terminasi yang memerlukan kehadiran suatu protein khusus (protein rho). Di antara keduanya terminasi diri lebih umum dijumpai. Terminasi diri terjadi pada urutan basa palindrom yang diikuti oleh beberapa adenin (A). Urutan palindrom adalah urutan yang sama jika dibaca dari dua arah yang berlawanan. Oleh karena urutan palindom ini biasanya diselingi oleh beberapa basa tertentu, maka molekul RNA yang dihasilkan akan mempunyai ujung terminasi berbentuk batang dan kala (loop) seperti pada Gambar 10.3.

urutan penyela

5’                                                                                                           3’

A T T A A A G G C T C C T T T T G G A G C C T T T T T T T T          DNA

T A A T T  T C C G A G GA AA A C C T C G G A A AAA A AA

3’                                                                                                           5’

 

transkripsi

 

 

U    U

U          U

C     G

C     G

U     A

C     G

G     C      RNA

G     C

A     U

A     U

5’                                         A     U                            3’

A   U   U                 U   U   U   U   U

Gambar 10.3 Terminasi sintesis RNA menghasilkan

ujung berbentuk batang dan kala

Inisiasi transkripsi tidak harus menunggu selesainya transkripsi sebelumnya. Hal ini karena begitu RNA polimerase telah melakukan pemanjangan 50 hingga 60 nukleotida, promoter dapat mengikat RNA polimerase yang lain. Pada gen-gen yang ditranskripsi dengan cepat reinisiasi transkripsi dapat terjadi berulang-ulang sehingga gen tersebut akan terselubungi oleh sejumlah molekul RNA dengan tingkat penyelesaian yang berbeda-beda.

Secara umum mekanisme transkripsi pada prokariot dan eukariot hampir sama. Hanya saja, pada prokariot produk langsung transkripsi atau transkrip primernya adalah mRNA (akan dijelaskan di bawah), sedangkan pada eukariot transkrip primernya harus mengalami prosesing RNA terlebih dahulu sebelum menjadi mRNA. Prosesing RNA ini mencakup dua peristiwa, yaitu modifikasi kedua ujung transkrip primer dan pembuangan urutan basa pada transkrip primer yang tidak akan ditranslasi (disebut intron). Ujung 5’ dimodifikasi dengan penambahan guanosin dalam ikatan 5’-5’ yang tidak umum hingga terbentuk suatu gugus terminal yang dinamakan cap, sedangkan ujung 3’ dimodifikasi dengan urutan poliadenosin (poli A) sepanjang lebih kurang 200 basa.  Sementara itu, panjang intron yang harus dibuang dapat mencapai 50% hingga 90% dari panjang transkrip primer, tetapi segmen yang mengandung ujung 5’ (gugus cap) tidak pernah dibuang. Setelah intron dibuang, segmen-segmen sisanya (disebut ekson) segera digabungkan menjadi mRNA. Pembuangan intron dan penggabungan ekson menjadi molekul mRNA dinamakan penyatuan RNA atau RNA splicing.

Macam-macam RNA

Transkripsi DNA menghasilkan molekul RNA yang kemudian akan mengalami diferensiasi struktur sesuai dengan fungsinya masing-masing. Kita mengenal tiga macam RNA, yaitu

  1. RNA duta atau messenger RNA (mRNA), yang mempunyai struktur linier kecuali bagian ujung terminasinya yang berbentuk batang dan kala (Gambar 10.3). Molekul mRNA membawa urutan basa yang sebagian di antaranya akan ditranslasi menjadi urutan asam amino. Urutan basa yang dinamakan urutan penyandi (coding sequences) ini dibaca tiga demi tiga. Artinya, tiap tiga basa akan menyandi pembentukan satu asam amino sehingga tiap tiga basa ini dinamakan triplet kodon. Daftar triplet kodon beserta asam amino yang disandinya dapat dilihat pada Tabel 10.1. Pada prokariot bagian mRNA yang tidak ditranslasi terletak di depan urutan penyandi (disebut pengarah atau leader) dan di antara dua urutan penyandi (disebut spacer sequences atau noncoding sequences). Sementara itu, pada eukariot di samping kedua bagian tadi ada juga bagian di dalam urutan penyandi yang tidak ditranslasi. Bagian inilah yang dinamakan intron seperti telah dijelaskan di atas. Molekul mRNA pada prokariot sering kali membawa sejumlah urutan penyandi bagi beberapa polipeptida yang berbeda. Molekul mRNA seperti ini dinamakan mRNA polisistronik. Dengan adanya mRNA polisistronik, sintesis beberapa protein yang masih terkait satu sama lain dapat diatur dengan lebih efisien karena hanya dibutuhkan satu sinyal. Pada eukariot hampir tidak pernah dijumpai mRNA polisistronik.
  2. RNA pemindah atau transfer RNA (tRNA), yang strukturnya mengalami modifikasi hingga berbentuk seperti daun semanggi. Seperti halnya struktur ujung terminasi mRNA, struktur seperti daun semanggi ini terjadi karena adanya urutan palindrom yang diselingi oleh beberapa basa (Gambar 10.4). Pada salah satu kalanya, tRNA membawa tiga buah basa yang komplemeter dengan triplet kodon pada mRNA. Ketiga basa ini dinamakan antikodon. Sementara itu, pada ujung 3’-nya terdapat tempat pengikatan asam amino tertentu. Pengikatan yang membentuk molekul aminoasil-tRNA ini terjadi dengan bantuan enzim aminoasil-tRNA sintetase. Dalam hal ini gugus hidroksil (OH) pada ujung 3’ tRNA terikat sangat kuat dengan gugus karboksil (COOH) asam amino. Macam asam amino yang dibawa ditentukan oleh urutan basa pada antikodon. Jadi, ada beberapa macam aminoasil-tRNA sesuai dengan antikodon dan macam asam amino yang dibawanya.

antikodon

 

5’

 

3’ (tempat pengikatan asam amino)

Gambar 10.4. Diagram struktur tRNA

3.  RNA ribosomal atau ribosomal RNA (rRNA), yang strukturnya merupakan bagian struktur ribosom. Lebih kurang separuh struktur kimia ribosom berupa rRNA dan separuh lainnya berupa protein. Molekul rRNA, dan juga tRNA, dapat dikatakan sebagai RNA struktural dan tidak ditranslasi menjadi asam amino/protein. Akan tetapi, mereka adalah bagian mesin sel yang menyintesis protein (lihat uraian tentang translasi di bawah ini).

Translasi

Bila dibandingkan dengan transkripsi, translasi merupakan proses yang lebih rumit karena melibatkan fungsi berbagai makromolekul. Oleh karena kebanyakan di antara makromolekul ini terdapat dalam jumlah besar di dalam sel, maka sistem translasi menjadi bagian utama mesin metabolisme pada tiap sel. Makromolekul yang harus berperan dalam proses translasi tersebut meliputi

  1. Lebih dari 50 polipeptida serta 3 hingga 5 molekul RNA di dalam tiap ribosom
  2. Sekurang-kurangnya 20 macam enzim aminoasil-tRNA sintetase yang akan mengaktifkan asam amino
  3. Empat puluh hingga 60 molekul tRNA yang berbeda
  4. Sedikitnya 9 protein terlarut yang terlibat dalam inisiasi, elongasi, dan terminasi polipeptida.

Translasi, atau pada hakekatnya sintesis protein, berlangsung di dalam ribosom, suatu struktur organel yang banyak terdapat di dalam sitoplasma. Ribosom terdiri atas dua subunit, besar dan kecil, yang akan menyatu selama inisiasi translasi dan terpisah ketika translasi telah selesai. Ukuran ribosom sering dinyatakan atas dasar laju pengendapannya selama sentrifugasi sebagai satuan yang disebut satuan Svedberg (S). Pada kebanyakan prokariot ribosom mempunyai ukuran 70S, sedangkan pada eukariot biasanya sekitar 80S.

Tiap ribosom mempunyai dua tempat pengikatan tRNA, yang masing-masing dinamakan tapak aminoasil (tapak A) dan tapak peptidil (tapak P). Molekul aminoasil-tRNA yang baru memasuki ribosom akan terikat di tapak A, sedangkan molekul tRNA yang membawa rantai polipeptida yang sedang diperpanjang terikat di tapak P.

Gambaran penting sintesis protein adalah bahwa proses ini berlangsung dengan arah tertentu sebagai berikut.

  1. Molekul mRNA ditranslasi dengan arah 5’→ 3’, tetapi tidak dari ujung 5’ hingga ujung 3’.
  2. Polipeptida disintesis dari ujung amino ke ujung karboksil dengan menambahkan asam-asam amino satu demi satu ke ujung karboksil. Sebagai contoh, sintesis protein yang mempunyai urutan NH2-Met-Pro- . . . -Gly-Ser-COOH pasti dimulai dengan metionin dan diakhiri dengan serin.

Mekanisme sintesis protein secara skema garis besar dapat dilihat pada Gambar 10.5. Sebuah molekul mRNA akan terikat pada permukaan ribosom yang kedua subunitnya telah bergabung. Pengikatan ini terjadi karena pada mRNA prokariot terdapat urutan basa tertentu yang disebut sebagai tempat pengikatan ribosom (ribosom binding site) atau urutan Shine-Dalgarno. Sementara itu, pada eukariot pengikatan ribosom dilakukan oleh ujung 5’ mRNA. Selanjutnya, berbagai aminoasil-tRNA akan berdatangan satu demi satu ke kompleks ribosom-mRNA ini dengan urutan sesuai dengan antikodon dan asam amino yang dibawanya. Urutan ini ditentukan oleh urutan triplet kodon pada mRNA. Ikatan peptida terbentuk di antara asam-asam amino yang terangkai menjadi rantai polipeptida di tapak P ribosom. Penggabungan asam-asam amino terjadi karena gugus amino pada asam amino yang baru masuk berikatan dengan gugus karboksil pada asam amino yang terdapat pada rantai polipeptida yang sedang diperpanjang. Penjelasan tentang mekanisme sintesis protein yang lebih rinci disertai contoh, khususnya pada prokariot, akan diberikan di bawah ini.

arah gerakan ribosom

 

ribosom

AUC     ACC

UAG     UGG

 

 

 

aa          aa

5’                                                            CUG        GGG               3’  mRNA

 

GAC

COOH
aa

tRNA                                                                               aminoasil-tRNA

aa                                                                           aa

NH2                                                                                  NH2 COOH

 

ikatan peptida

Gambar 10.5. Skema garis besar sintesis protein

Inisiasi sintesis protein dilakukan oleh aminoasil-tRNA khusus, yaitu tRNA yang membawa metionin (dilambangkan sebagai metionil-tRNAiMet). Hal ini berarti bahwa sintesis semua polipeptida selalu dimulai dengan metionin. Khusus pada prokariot akan terjadi formilasi gugus amino pada metionil-tRNAiMet (dilambangkan sebagai metionil-tRNAfMet) yang mencegah terbentuknya ikatan peptida antara gugus amin tersebut dengan gugus karboksil asam amino pada ujung polipetida yang sedang diperpanjang sehingga asam amino awal pada polipeptida prokariot selalu berupa f-metionin. Pada eukariot metionil-tRNAiMet tidak mengalami formilasi gugus amin, tetapi molekul ini akan bereaksi dengan protein-protein tertentu yang berfungsi sebagai faktor inisiasi    (IF-1, IF-2, dan IF-3). Selain itu, baik pada prokariot maupun eukariot, terdapat pula metionil-tRNA yang metioninnya bukan merupakan asam amino awal (dilambangkan sebagai metionil-tRNAMet).

Kompleks inisiasi pada prokariot terbentuk antara mRNA, metionil-tRNAfMet, dan subunit kecil ribosom (30S) dengan bantuan protein IF-1, IF-2, dan IF-3, serta sebuah molekul GTP. Pembentukan kompleks inisiasi ini diduga difasilitasi oleh perpasangan basa antara suatu urutan di dekat ujung 3’ rRNA berukuran 16S dan sebagian urutan pengarah (leader sequence) pada mRNA. Selanjutnya, kompleks inisiasi bergabung dengan subunit besar ribosom (50S), dan metionil-tRNAfMet terikat pada tapak P.  Berpasangannya triplet kodon inisiasi pada mRNA dengan antikodon pada metionil-tRNAfMet di tapak P menentukan urutan triplet kodon dan aminoasil-tRNAfMet berikutnya yang akan masuk ke tapak A. Pengikatan aminoasil-tRNAfMet berikutnya, misalnya alanil- tRNAala, ke tapak A memerlukan protein-protein elongasi EF-Ts dan EF-Tu. Pembentukan ikatan peptida antara gugus karboksil pada metionil-tRNAfMet di tapak P dan gugus amino pada alanil-tRNAala di tapak A dikatalisis oleh enzim peptidil transferase, suatu enzim yang terikat pada subunit ribosom 50S. Reaksi ini menghasilkan dipeptida yang terdiri atas f-metionin dan alanin yang terikat pada tRNAala di tapak A.

Langkah berikutnya adalah translokasi, yang melibatkan (1) perpindahan f-met-ala- tRNAala dari tapak A ke tapak P dan (2) pergeseran posisi mRNA pada ribosom sepanjang tiga basa sehingga triplet kodon yang semula berada di tapak A masuk ke tapak P.  Dalam contoh ini triplet kodon yang bergeser dari tapak A ke P tersebut adalah triplet kodon untuk alanin. Triplet kodon berikutnya, misalnya penyandi serin, akan masuk ke tapak A dan proses seperti di atas hingga translokasi akan terulang kembali.  Translokasi memerlukan aktivitas faktor elongasi berupa enzim yang biasa dilambangkan dengan EF-G.

Pemanjangan atau elongasi rantai polipeptida akan terus berlangsung hingga suatu tripet kodon yang menyandi terminasi memasuki tapak A. Sebelum suatu rantai polipeptida selesai disintesis terlebih dahulu terjadi deformilisasi pada f-metionin menjadi metionin. Terminasi ditandai oleh terlepasnya mRNA, tRNA di tapak P, dan rantai polipeptida dari ribosom. Selain itu, kedua subunit ribosom pun memisah. Pada terminasi diperlukan aktivitas dua protein yang berperan sebagai faktor pelepas atau releasing factors, yaitu RF-1 dan RF-2.

Sesungguhnya setiap mRNA tidak hanya ditranslasi oleh sebuah ribosom. Pada umumnya sebuah mRNA akan ditranslasi secara serempak oleh beberapa ribosom yang satu sama lain berjarak sekitar 90 basa di sepanjang molekul mRNA. Kompleks translasi yang terdiri atas sebuah mRNA dan beberapa ribosom ini dinamakan poliribosom atau polisom. Besarnya polisom sangat bervariasi dan berkorelasi dengan ukuran polipeptida yang akan disintesis. Sebagai contoh, rantai hemoglobin yang tersusun dari sekitar 150 asam amino disintesis oleh polisom yang terdiri atas lima buah ribosom (pentaribosom).

Pada prokariot translasi seringkali dimulai sebelum transkripsi berakhir. Hal ini dimungkinkan terjadi karena tidak adanya dinding nukleus yang memisahkan antara transkripsi dan translasi. Dengan berlangsungnya kedua proses tersebut secara bersamaan, ekspresi gen menjadi sangat cepat dan mekanisme nyala-padam (turn on-turn off) ekspresi gen, seperti yang akan dijelaskan nanti, juga menjadi sangat efisien.

Namun, tidak demikian halnya pada eukariot. Transkripsi terjadi di dalam nukleus, sedangkan translasi terjadi di sitoplasma (ribosom). Pertanyaan yang muncul adalah bagaimana mRNA hasil transkripsi dipindahkan dari nukleus ke sitoplasma, faktor-faktor apa yang menentukan saat dan tempat translasi? Sayangnya, hingga kini kita belum dapat menjawab pertanyaan-pertanyaan tersebut dengan memuaskan. Kita baru mengetahui bahwa transkripsi dan translasi pada eukariot jauh lebih rumit daripada proses yang ada pada prokariot. Salah satu di antaranya seperti telah kita bicarakan di atas, yaitu bahwa mRNA hasil transkripsi (transkrip primer) pada eukariot memerlukan prosesing terlebih dahulu sebelum dapat ditranslasi.

Kode genetik

Penetapan triplet kodon pada mRNA sebagai pembawa informasi genetik atau kode genetik yang akan menyandi pembentukan suatu asam amino tertentu berawal dari pemikiran bahwa macam basa nitrogen jauh lebih sedikit daripada macam asam amino. Basa nitrogen pada mRNA hanya ada empat macam, sedangkan asam amino ada 20 macam. Oleh karena itu, jelas tidak mungkin tiap asam amino disandi oleh satu basa. Begitu juga, kombinasi dua basa hanya akan menghasilkan 42 atau 16 macam duplet, masih lebih sedikit daripada macam amino yang ada. Kombinasi tiga basa akan menghasilkan 43 atau 64 triplet, melebihi jumlah macam asam amino. Dalam hal ini, satu macam asam amino dapat disandi oleh lebih dari satu macam triplet kodon.

Tabel 10.1. Kode genetik

Basa I

(5’)

Basa II Basa III (3’)
U C A G

 

U

 

U

Phe Ser Tyr Cys
Phe Ser Tyr Cys C
Leu Ser Stop Stop A
Leu Ser Stop Trp G

 

C

Leu Pro His Arg U
Leu Pro His Arg C
Leu Pro Gln Arg A
Leu Pro Gln Arg G

 

A

ILe Thr Asn Ser U
Ile Thr Asn Ser C
ILe Thr Lys Arg A
Met Thr Lys Arg G

 

G

Val Ala Asp Gly U
Val Ala Asp Gly C
Val Ala Glu Gly A
Val Ala Glu Gly G

Keterangan :

phe = fenilalanin ser = serin his = histidin glu = asam glutamat
leu = leusin pro = prolin gln = glutamin cys = sistein
ile = isoleusin thr = treonin asn = asparagin trp = triptofan
met = metionin ala = alanin lys = lisin arg = arginin
val = valin tyr = tirosin asp = asam aspartat gly = glisin

AUG (kodon metionin) dapat menjadi kodon awal (start codon)

stop = kodon stop (stop codon)

 

Bukti bahwa kode genetik berupa triplet kodon diperoleh dari hasil penelitian F.H.C. Crick dan kawan-kawannya yang mempelajari mutasi pada lokus rIIB bakteriofag T4. Mutasi tersebut diinduksi oleh proflavin, suatu molekul yang dapat menyisip di sela-sela pasangan basa nitrogen sehingga kesalahan replikasi DNA dapat terjadi sewaktu-waktu, menghasilkan DNA yang kelebihan atau kekurangan satu pasangan basa. Hal ini akan menyebabkan perubahan rangka baca (reading frame), yaitu urutan pembacaan basa-basa nitrogen untuk diterjemahkan menjadi urutan asam amino tertentu. Mutasi yang disebabkan oleh perubahan rangka baca akibat kelebihan atau kekurangan pasangan basa disebut sebagai mutasi rangka baca (frameshift mutation) (lihat Bab XI).

Jika mutan (hasil mutasi) rangka baca yang diinduksi oleh proflavin ditumbuhkan pada medium yang mengandung proflavin, akan diperoleh beberapa fag tipe liar sehingga mutasi seolah-olah dapat dipulihkan atau terjadi mutasi balik (reverse mutation). Pada awalnya mutasi balik diduga karena kelebihan pasangan basa dibuang dari rangka baca yang salah sehingga rangka baca tersebut telah diperbaiki menjadi seperti semula. Namun, karena mutasi bersifat acak, maka mekanisme semacam itu kecil sekali kemungkinannya untuk terjadi dan dugaan tersebut nampaknya tidak benar. Crick dan kawan-kawannya menjelaskan bahwa mutasi balik disebabkan oleh hilangnya (delesi) satu pasangan basa lain yang letaknya tidak terlalu jauh dari pasangan basa yang menyisip (adisi). Rangka baca yang baru ini akan menghasilkan urutan asam amino yang masih sama fungsinya dengan urutan sebelum terjadi mutasi. Dengan perkataan lain, mutasi balik terjadi karena efek mutasi awal akibat penambahan basa ditekan oleh mutasi kedua akibat pengurangan basa sehingga mutasi yang kedua ini disebut juga sebagai mutasi penekan (suppressor mutation).

Protein rIIB pada T4 mempunyai bagian-bagian yang di dalamnya dapat terjadi perubahan urutan asam amino. Perubahan ini dapat berpengaruh atau tidak berpengaruh terhadap fungsi proteinnya. Jika dua strain mutan T4 yang satu sama lain mengalami mutasi berbeda di dalam bagian protein rIIB disilangkan melalui infeksi campuran pada suatu inang, maka T4 tipe liar akan diperoleh sebagai hasil rekombinasi genetik antara kedua tempat mutasi yang berbeda itu. Akan tetapi, ketika kedua strain mutan rIIB yang disilangkan merupakan strain-strain yang diseleksi secara acak (tidak harus mengalami mutasi yang berbeda), ternyata tidak selalu diperoleh tipe liar. Hasil ini menunjukkan bahwa strain-strain mutan dapat dibagi menjadi dua kelompok, yaitu strain + dan strain -. Dalam hal ini, strain + tidak harus selalu mutan adisi, dan strain – tidak harus selalu mutan delesi. Namun, sekali kita menggunakan tanda + untuk mutan adisi berarti strain + adalah mutan adisi. Begitu pula sebaliknya, sekali kita gunakan tanda + untuk mutan delesi berarti strain + adalah mutan delesi.

Persilangan antara strain + dan strain – hanya menghasilkan rekombinasi berupa fenotipe tipe liar, sedangkan persilangan antara sesama + atau sesama – tidak pernah menghasilkan tipe liar. Hal ini karena persilangan sesama + atau sesama – akan menyebabkan adisi atau delesi ganda sehingga selalu menghasilkan fenotipe mutan. Sementara itu, persilangan antara starin + dan – akan menyebabkan terjadinya mutasi penekan (adisi ditekan oleh delesi atau delesi ditekan oleh adisi) atau hanya menghasilkan mutasi pada urutan asam amino yang tidak berpengaruh terhadap fungsi protein sehingga diperoleh fenotipe tipe liar.

AUG UUU CCC AAA GGG UUU . . . . . . CCC UAG        mRNA tipe liar

met    phe    pro    lys     gly     phe               pro   stop

 

penambahan pasangan basa A=T (mutasi rangka baca I)

 

AUG AUU UCC CAA AGG GUU U . . . . .  CCU AG . . .  mRNA mutan

met     ile     ser    gln     arg     val                   leu

 

pengurangan pasangan basa G = G(mutasi rangka baca II)

 

AUG AUU UCC AAA GGG UUU . . . . . . CCC UAG        mRNA ‘tipe liar’

met     ile     ser     lys     gly    phe                pro   stop

 

urutan asam          urutan asam amino tipe liar

amino yang berubah

Gambar 10.6. Mutasi penekan yang memulihkan rangka baca

Oleh karena persilangan sesama + atau sesama – tidak pernah menghasilkan tipe liar, kode genetik jelas tidak mungkin terdiri atas dua basa. Seandainya, kode genetik berupa duplet, maka akan terjadi pemulihan rangka baca hasil persilangan tersebut. Kenyataannya tidak demikian. Pemulihan rangka baca akibat mutasi penekan justru terjadi apabila persilangan dilakukan antara strain + dan strain -.

Apabila kode genetik berupa triplet, maka persilangan teoretis sesama + atau sesama – akan menghasilkan fenotipe mutan, sesuai dengan hasil kenyataannya. Namun, rekombinasi antara tiga + atau tiga – akan menghasilkan tipe liar. Hal ini memperlihatkan bahwa kode genetik terdiri atas tiga basa.

urutan yang bila berubah tidak berpengaruh      urutan yang bila berubah berpengaruh

 

tipe liar             AB  CD  EF  GH  IJ  KL                             MN  OP  QR  ST  UV  WX       protein tipe liar

+1 AB  C1  DE  FG  HI  JK                             LM  NO  PQ  RS  TU  VW  X    protein mutan

+2 AB  CD  E2  FG  HI  JK                             LM  NO  PQ  RS  TU  VW  X    protein mutan

-1 AB   DE  FG  HI  JK LM                            NO   PQ  RS  TU  VW  X           protein mutan

-2 AB   CD  FG  HI  JK LM                            NO   PQ  RS  TU  VW  X           protein mutan

+1 x +2 AB   C1   DE  2F  GH IJ  KL                       MN  OP QR  ST  UV  WX       protein tipe liar

-1 x -2 AB   CD  EF   GH  IJ  KL                            MN  OP  QR ST  UV  WX       protein tipe liar

+1 x -1 AB   C1   DE   FG  HI JK                            LM  NO  PQ  RS  TU  VW  X    protein mutan

 

a)

 

urutan yang bila berubah tidak berpengaruh      urutan yang bila berubah berpengaruh

 

tipe liar             ABC  DEF  GHI  JKL                                  MNO PQR STU VWX             protein tipe liar

+1 AB1   CDE  FGH IJK                                  LMN  OPQ RST UVW  X         protein mutan

+2 ABC   DE2  FGH IJK                                  LMN  OPQ RST UVW  X         protein mutan

+3 ABC   DEF  GHI  J3K                                 LMN  OPQ RST UVW  X         protein mutan

+1 x +2 AB1   CDE  2FG  HIJ                                  KLM  NOP QRS TUV WX       protein mutan

+1 x +2 x +3 AB1    CDE  2FG  HIJ  3KL                        MNO  PQR STU VWX            protein tipe liar

 

b)

Gambar 10.7. Diagram persilangan mutan rIIB pada T4 yang memperlihatkan

bahwa kode genetik berupa triplet kodon

a) Jika kode genetik berupa duplet, hasil persilangan teoretis

tidak sesuai dengan kenyataan yang diperoleh.

b) Jika kode genetik berupa triplet, hasil persilangan teoretis

sesuai dengan kenyataan yang diperoleh.

Sifat-sifat kode genetik

Kode genetik mempunyai sifat-sifat yang akan dijelaskan sebagai berikut.

  1. Kode genetik bersifat universal. Artinya, kode genetik berlaku sama hampir di setiap spesies organisme.
  2. Kode genetik bersifat degenerate atau redundant, yaitu bahwa satu macam asam amino dapat disandi oleh lebih dari satu triplet kodon. Sebagai contoh, treonin dapat disandi oleh ACU, ACC, ACA, dan ACG.  Sifat ini erat kaitannya dengan sifat wobble basa ketiga, yang artinya bahwa basa ketiga dapat berubah-ubah tanpa selalu disertai perubahan macam asam amino yang disandinya. Diketahuinya sifat wobble bermula dari penemuan basa inosin (I) sebagai basa pertama pada antikodon tRNAala ragi, yang ternyata dapat berpasangan dengan basa A, U, atau pun C.  Dengan demikian, satu antikodon pada tRNA dapat mengenali lebih dari satu macam kodon pada mRNA.
  3. Oleh karena tiap kodon terdiri atas tiga buah basa, maka tiap urutan basa mRNA, atau berarti juga DNA, mempunyai tiga rangka baca yang berbeda (open reading frame). Di samping itu, di dalam suatu segmen tertentu pada DNA dapat terjadi transkripsi dan translasi urutan basa dengan panjang yang berbeda. Dengan perkataan lain, suatu segmen DNA dapat terdiri atas lebih dari sebuah gen yang saling tumpang tindih (overlapping).  Sebagai contoh, bakteriofag фX174 mempunyai sebuah untai tunggal DNA yang panjangnya lebih kurang hanya 5000 basa. Seandainya dari urutan basa ini hanya digunakan sebuah rangka baca, maka akan terdapat sekitar 1700 asam amino yang dapat disintesis. Kemudian, jika sebuah molekul protein rata-rata tersusun dari 400 asam amino, maka dari sekitar 1700 asam amino tersebut hanya akan terbentuk 4 hingga 5 buah molekul protein. Padahal kenyataannya, bakteriofag фX174 mempunyai 11 protein yang secara keseluruhan terdiri atas 2300 asam amino. Dengan demikian, jelaslah bahwa dari urutan basa DNA yang ada tidak hanya digunakan sebuah rangka baca, dan urutan basa yang diekspresikan (gen) dapat tumpang tindih satu sama lain.

Pengaturan Ekspresi Gen

Produk-produk gen tertentu seperti protein ribosomal, rRNA, tRNA, RNA polimerase, dan enzim-enzim yang mengatalisis berbagai reaksi metabolisme yang berkaitan dengan fungsi pemeliharaan sel merupakan komponen esensial bagi semua sel. Gen-gen yang menyandi pembentukan produk semacam itu perlu diekspresikan terus-menerus sepanjang umur individu di hampir semua jenis sel tanpa bergantung kepada kondisi lingkungan di sekitarnya. Sementara itu, banyak pula gen lainnya yang ekspresinya sangat ditentukan oleh kondisi lingkungan sehingga mereka hanya akan  diekspresikan pada waktu dan di dalam jenis sel tertentu. Untuk gen-gen semacam ini harus ada mekanisme pengaturan ekspresinya.

Pengaturan ekspresi gen dapat terjadi pada berbagai tahap, misalnya transkripsi, prosesing mRNA, atau translasi. Namun, sejumlah data hasil penelitian menunjukkan bahwa pengaturan ekspresi gen, khususnya pada prokariot, paling banyak terjadi pada tahap transkripsi.

Mekanisme pengaturan transkripsi, baik pada prokariot maupun pada eukariot, secara garis besar dapat dibedakan menjadi dua kategori utama, yaitu (1) mekanisme yang melibatkan penyalapadaman (turn on and turn off) ekspresi gen sebagai respon terhadap perubahan kondisi lingkungan dan (2) sirkit ekspresi gen yang telah terprogram (preprogramed circuits). Mekanisme penyalapadaman sangat penting bagi mikroorganisme untuk menyesuaikan diri terhadap perubahan lingkungan yang seringkali terjadi secara tiba-tiba. Sebaliknya, bagi eukariot mekanisme ini nampaknya tidak terlalu penting karena pada organisme ini sel justru cenderung merespon sinyal-sinyal yang datang dari dalam tubuh, dan di sisi lain, sistem sirkulasi akan menjadi penyangga bagi sel terhadap perubahan kondisi lingkungan yang mendadak tersebut. Pada mekanisme sirkit, produk suatu gen akan menekan transkripsi gen itu sendiri dan sekaligus memacu transkripsi gen kedua, produk gen kedua akan menekan transkripsi gen kedua dan memacu transkripsi gen ketiga, demikian seterusnya. Ekspresi gen yang berurutan ini telah terprogram secara genetik sehingga gen-gen tersebut tidak akan dapat diekspresikan di luar urutan. Oleh karena urutan ekspresinya berupa sirkit, maka mekanisme tersebut dinamakan sirkit ekspresi gen.

Induksi dan represi pada prokariot

Escherichia coli merupakan bakteri yang sering dijadikan model untuk mempelajari berbagai mekanisme genetika molekuler. Bakteri ini secara alami hidup di dalam usus besar manusia dengan memanfaatkan sumber karbon yang umumnya berupa glukosa. Apabila suatu ketika E. coli ditumbuhkan pada medium yang sumber karbonnya bukan glukosa melainkan laktosa, maka enzim pemecah laktosa akan disintesis, sesuatu yang tidak biasa dilakukannya.  Untuk itu, gen-gen penyandi berbagai enzim yang terlibat dalam pemanfaatan laktosa akan diekspresikan (turned on).  Sebaliknya, dalam keadaan normal, yaitu ketika tersedia glukosa sebagai sumber karbon, maka gen-gen tersebut tidak diekspresikan (turned off). Proses yang terjadi ketika ekspresi gen merupakan respon terhadap keberadaan suatu zat di lingkungannya dikenal sebagai induksi, sedangkan zat atau molekul yang menyebabkan terjadinya induksi disebut sebagai induser. Jadi, dalam contoh ini laktosa merupakan induser.

Induksi secara molekuler terjadi pada tingkat transkripsi. Peristiwa ini berkenaan dengan laju sintesis enzim, bukan dengan aktivitas enzim. Pada pengaktifan enzim suatu molekul kecil akan terikat pada enzim sehingga akan terjadi peningkatan aktivitas enzim tersebut, bukan peningkatan laju sintesisnya.

Selain mempunyai kemampuan untuk memecah suatu molekul (katabolisme), bakteri juga dapat menyintesis (anabolisme) berbagai molekul organik yang diperlukan bagi pertumbuhannya.  Sebagai contoh, Salmonella typhimurium mempunyai sejumlah gen yang menyandi enzim-enzim untuk biosintesis triptofan. Dalam medium pertumbuhan yang tidak mengandung triptofan, S. typhimurium akan mengekspresikan (turned on) gen-gen tersebut. Akan tetapi, jika suatu saat ke dalam medium pertumbuhannya ditambahkan triptofan, maka gen-gen tersebut tidak perlu diekspresikan (turned off). Proses pemadaman (turn off) ekspresi gen sebagai respon terhadap keberadaan suatu zat di lingkungannya dinamakan represi, sedangkan zat yang menyebabkan terjadinya represi disebut sebagai korepresor. Jadi, dalam contoh ini triptofan merupakan korepresor.

Seperti halnya induksi, represi juga terjadi pada tahap transkripsi. Represi sering dikacaukan dengan inhibisi umpan balik (feedback inhibition), yaitu penghambatan aktivitas enzim akibat pengikatan produk akhir reaksi yang dikatalisis oleh enzim itu sendiri. Represi tidak menghambat aktivitas enzim, tetapi menekan laju sintesisnya.

Model operon

Mekanisme molekuler induksi dan represi telah dapat dijelaskan menurut model yang diajukan oleh F. Jacob dan J. Monod pada tahun 1961. Menurut model yang dikenal sebagai operon ini ada dua unsur yang mengatur transkripsi gen struktural penyandi enzim, yaitu gen regulator (gen represor) dan operator yang letaknya berdekatan dengan gen-gen struktural yang diaturnya. Gen regulator menyandi pembentukan suatu protein yang dinamakan represor. Pada kondisi tertentu represor akan berikatan dengan operator, menyebabkan terhalangnya transkripsi gen-gen struktural. Hal ini terjadi karena enzim RNA polimerase tidak dapat memasuki promoter yang letaknya berdekatan, atau bahkan tumpang tindih, dengan operator.

Secara keseluruhan setiap operon terdiri atas promoter operon atau promoter bagi gen-gen struktural (PO), operator (O), dan gen-gen struktural (GS). Di luar operon terdapat gen regulator (R) beserta promoternya (PR), molekul protein represor yang dihasilkan oleh gen regulator, dan molekul efektor. Molekul efektor pada induksi adalah induser, sedangkan pada represi adalah korepresor.

operon

PR           R                                   PO       O            GS1                  GS2                 GS3

 

 

represor                                      efektor (induser atau korepresor)

a)

 

RNA polimerase

induser

RNA polimerase berjalan

 

transkripsi

kompleks represor-induser

translasi

b)

RNA polimerase berjalan

transkripsi

korepresor

translasi

 

kompleks represor-korepresor

c)

Gambar 10.8. Model operon untuk pengaturan ekspresi gen

a) komponen operon    b) induksi    c) represi

Pada Gambar 10.8 terlihat bahwa terikatnya represor pada operator terjadi dalam keadaan yang berkebalikan antara induksi dan represi. Pada induksi represor secara normal akan berikatan dengan operator sehingga RNA polimerase tidak dapat memasuki promoter operon. Akibatnya, transkripsi gen-gen struktural tidak dapat berlangsung. Namun, dengan terikatnya represor oleh induser, promoter operon menjadi terbuka bagi RNA polimerase sehingga gen-gen struktural dapat ditranskripsi dan selanjutnya ditranslasi. Dengan demikian, gen-gen struktural akan diekspresikan apabila terdapat molekul induser yang mengikat represor.

Operon yang terdiri atas gen-gen yang ekspresinya terinduksi dinamakan operon induksi. Salah satu contohnya adalah operon lac, yang terdiri atas gen-gen penyandi enzim pemecah laktosa seperti telah disebutkan di atas.

Sebaliknya, pada represi secara normal represor tidak berikatan dengan operator sehingga RNA polimerase dapat memasuki promoter operon dan transkripsi gen-gen struktural dapat terjadi. Akan tetapi, dengan adanya korepresor, akan terbentuk kompleks represor-korepresor yang kemudian berikatan dengan operator. Dengan pengikatan ini, RNA polimerase tidak dapat memasuki promoter operon sehingga transkripsi gen-gen struktural menjadi terhalang. Jadi, ekspresi gen-gen struktural akan terepresi apabila terdapat molekul korepresor yang berikatan dengan represor.

Gen-gen yang ekspresinya dapat terepresi merupakan komponen operon yang dinamakan operon represi. Operon trp, yang terdiri atas gen-gen penyandi enzim untuk biosintesis triptofan merupakan contoh operon represi.

Pengaturan ekspresi gen pada eukariot

Hingga sekarang kita baru sedikit sekali mengetahui mekanisme pengaturan ekspresi gen pada eukariot. Namun, kita telah mengetahui bahwa pada eukariot tingkat tinggi gen-gen yang berbeda akan ditranskripsi pada jenis sel yang berbeda. Hal ini menunjukkan bahwa mekanisme pengaturan pada tahap transkripsi, dan juga prosesing mRNA, memegang peran yang sangat penting dalam proses diferensiasi sel.

Operon, kalau pun ada, nampaknya tidak begitu penting pada eukariot. Hanya pada eukariot tingkat rendah seperti jamur dapat ditemukan satuan-satuan operon atau mirip operon. Semua mRNA pada eukariot tingkat tinggi adalah monosistronik, yaitu hanya membawa urutan sebuah gen struktural. Transkrip primer yang adakalanya menyerupai polisistronik pun akan diproses menjadi mRNA yang monosistronik.

Selain itu, terindikasi juga bahwa diferensiasi sel sedikit banyak melibatkan ekspresi seperangkat gen yang telah terprogram (preprogramed). Berbagai macam sinyal seperti molekul-molekul sitoplasmik, hormon, dan rangsangan dari lingkungan memicu dimulainya pembacaan program-program dengan urutan tertentu pada waktu dan tempat yang tepat selama perkembangan individu. Bukti paling nyata mengenai adanya keharusan urutan pembacaan program pada waktu dan tempat tertentu dapat dilihat pada kasus mutasi yang terjadi pada lalat Drosophila, misalnya munculnya sayap di kepala di tempat yang seharusnya untuk mata. Dengan mempelajari mutasi-mutasi semacam ini diharapkan akan diperoleh pengetahuan tentang mekanisme pengaturan ekspresi gen selama perkembangan normal individu.

Pada eukariot tingkat tinggi kurang dari 10 persen gen yang terdapat di dalam seluruh genom akan terepresentasikan urutan basanya di antara populasi mRNA yang telah mengalami prosesing. Sebagai contoh, hanya ada dua hingga lima persen urutan DNA mencit yang akan terepresentasikan pada mRNA di dalam sel-sel hatinya. Demikian pula, mRNA di dalam sel-sel otak katak Xenopus hanya merepresentasikan delapan persen urutan DNAnya. Jadi, sebagian besar urutan basa DNA di dalam genom eukariot tingkat tinggi tidak terepresentasikan di antara populasi mRNA yang ada di dalam sel atau jaringan tertentu. Dengan perkataan lain, molekul mRNA yang dihasilkan dari perangkat gen yang berbeda akan dijumpai di dalam sel atau jaringan yang berbeda pula.

Dosis gen dan amplifikasi gen

Kebutuhan akan produk-produk gen pada eukariot dapat sangat bervariasi. Beberapa produk gen dibutuhkan dalam jumlah yang jauh lebih besar daripada produk gen lainnya sehingga terdapat nisbah kebutuhan di antara produk-produk gen yang berbeda. Untuk memenuhi nisbah kebutuhan ini antara lain dapat ditempuh melalui dosis gen. Katakanlah, ada gen A dan gen B yang ditranskripsi dan ditranslasi dengan efisiensi yang sama. Produk gen A dapat 20 kali lebih banyak daripada produk gen B apabila terdapat 20 salinan (kopi) gen A untuk setiap salinan gen B. Contoh yang nyata dapat dilihat pada gen-gen penyandi histon. Untuk menyintesis histon dalam jumlah besar yang dibutuhkan dalam pembentukan kromatin, kebanyakan sel mempunyai beratus-ratus kali salinan gen histon daripada jumlah salinan gen yang diperlukan untuk replikasi DNA.

Salah satu pengaruh dosis gen adalah amplifikasi gen, yaitu peningkatan jumlah gen sebagai respon terhadap sinyal tertentu. Sebagai contoh, amplifikasi gen terjadi selama perkembangan oosit katak Xenopus laevis. Pembentukan oosit dari prekursornya (oogonium) merupakan proses kompleks yang membutuhkan sejumlah besar sintesis protein. Untuk itu dibutuhkan sejumlah besar ribosom. Kita mengetahui bahwa ribosom antara lain terdiri atas molekul-molekul rRNA. Padahal, sel-sel prekursor tidak mempunyai gen penyandi rRNA dalam jumlah yang mencukupi untuk sintesis molekul tersebut dalam waktu yang relatif singkat. Namun, sejalan dengan perkembangan oosit terjadi peningkatan jumlah gen rRNA hingga 4000 kali sehingga dari sebanyak 600 gen yang ada pada prekursor akan diperoleh sekitar dua juta gen setelah amplifikasi. Jika sebelum amplifikasi ke-600 gen rRNA berada di dalam satu segmen DNA linier, maka selama dan setelah amplifikasi gen tersebut akan berada di dalam gulungan-gulungan kecil yang mengalami replikasi. Molekul rRNA tidak diperlukan lagi ketika oosit telah matang hingga saat terjadinya fertilisasi. Oleh karena itu, gen rRNA yang telah begitu banyak disalin kemudian didegradasi kembali oleh berbagai enzim intrasel.

Jika waktu yang tersedia untuk melakukan sintesis sejumlah besar protein cukup banyak, amplifikasi gen sebenarnya tidak perlu dilakukan. Cara lain untuk mengatasi kebutuhan protein tersebut adalah dengan meningkatkan masa hidup mRNA (lihat bagian pengaturan translasi).

Pengaturan transkripsi

Berdasarkan atas banyaknya salinan di dalam tiap sel, molekul mRNA dapat dibagi menjadi tiga kelompok, yaitu (1) mRNA salinan tunggal (single copy), (2) mRNA semiprevalen dengan jumlah salinan lebih dari satu hingga beberapa ratus per sel, dan (3) mRNA superprevalen dengan jumlah salinan beberapa ratus hingga beberapa ribu per sel. Molekul mRNA salinan tunggal dan semiprevalen masing-masing menyandi enzim dan protein struktural. Sementara itu, mRNA superprevalen biasanya dihasilkan sejalan dengan terjadinya perubahan di dalam suatu tahap perkembangan organisme eukariot. Sebagai contoh, sel-sel eritroblas di dalam sumsum tulang belakang mempunyai sejumlah besar mRNA yang dapat ditranslasi menjadi globin matang. Di sisi lain, hanya sedikit sekali atau bahkan tidak ada globin yang dihasilkan oleh sel-sel prekursor yang belum berkembang menjadi eritroblas. Dengan demikian, kita dapat memastikan adanya suatu mekanisme pengaturan ekspresi gen penyandi mRNA superprevalen pada tahap transkripsi eukariot meskipun hingga kini belum terlalu banyak rincian prosesnya yang dapat diungkapkan.

Salah satu regulator yang diketahui berperan dalam transkripsi eukariot adalah hormon, molekul protein kecil yang dibawa dari sel tertentu menuju ke sel target. Mekanisme kerja hormon dalam mengatur transkripsi eukariot lebih kurang dapat disetarakan dengan induksi pada prokariot. Namun, penetrasi hormon ke dalam sel target dan pengangkutannya ke dalam nukleus merupakan proses yang jauh lebih rumit bila dibandingkan dengan induksi oleh laktosa pada E. coli.

Secara garis besar pengaturan transkripsi oleh hormon dimulai dengan masuknya hormon ke dalam sel target melewati membran sel, yang kemudian ditangkap oleh reseptor khusus yang terdapat di dalam sitoplasma sehingga terbentuk kompleks hormon-reseptor. Setelah kompleks ini terbentuk biasanya reseptor akan mengalami modifikasi struktur kimia. Kompleks hormon-reseptor yang termodifikasi kemudian menembus dinding nukleus untuk memasuki nukleus. Proses selanjutnya belum banyak diketahui, tetapi rupanya di dalam nukleus kompleks tersebut, atau mungkin hormonnya saja, akan mengalami salah satu di antara beberapa peristiwa, yaitu (1) pengikatan langsung pada DNA, (2) pengikatan pada suatu protein efektor, (3) aktivasi protein yang terikat DNA, (4) inaktivasi represor, dan (5) perubahan struktur kromatin agar DNA terbuka bagi enzim RNA polimerase.

Contoh induksi transkripsi oleh hormon antara lain dapat dilihat pada stimulasi sintesis ovalbumin pada saluran telur (oviduktus) ayam oleh hormon kelamin estrogen. Jika ayam disuntik dengan estrogen, jaringan-jaringan oviduktus akan memberikan respon berupa sintesis mRNA untuk ovalbumin. Sintesis ini akan terus berlanjut selama estrogen diberikan, dan hanya sel-sel oviduktus yang akan menyintesis mRNA tersebut. Hal ini karena sel-sel atau jaringan lainnya tidak mempunyai reseptor hormon estrogen di dalam sitoplasmanya.

Pengaturan pada tahap prosesing mRNA

Dua jenis sel yang berbeda dapat membuat protein yang sama tetapi dalam jumlah yang berbeda meskipun transkripsi di dalam kedua sel tersebut terjadi pada gen yang sama. Fenomena ini seringkali berkaitan dengan adanya molekul-molekul mRNA yang berbeda, yang akan ditranslasi dengan efisiensi berbeda pula.

Pada tikus, misalnya, ditemukan bahwa perbedaan sintesis enzim α-amilase oleh berbagai mRNA yang berasal dari gen yang sama dapat terjadi karena adanya perbedaan pola pembuangan intron. Kelenjar ludah menghasilkan α-amilase lebih banyak daripada yang dihasilkan oleh jaringan hati meskipun gen yang ditranskripsi sama. Jadi, dalam hal ini transkrip primernya sebenarnya sama, tetapi kemudian ada perbedaan mekanisme prosesing, khususnya pada penyatuan (splicing) mRNA.

Pengaturan translasi

Berbeda dengan translasi mRNA pada prokariot yang terjadi dalam jumlah yang lebih kurang sama, pada eukariot ada mekanisme pengaturan translasi. Macam-macam pengaturan tersebut adalah (1) kondisi bahwa mRNA tidak akan ditranslasi sama sekali sebelum datangnya suatu sinyal, (2) pengaturan umur (lifetime) molekul mRNA, dan (3) pengaturan laju seluruh sintesis protein.

Telur yang tidak dibuahi secara biologi bersifat statis. Akan tetapi, begitu fertilisasi terjadi, sejumlah protein akan disintesis. Hal ini menunjukkan bahwa di dalam sel telur yang belum dibuahi akan dijumpai sejumlah mRNA yang menantikan datangnya sinyal  untuk translasi. Sinyal tersebut tidak lain adalah fertilisasi oleh spermatozoon, sedangkan molekul mRNA yang belum ditranslasi itu dinamakan mRNA tersembunyi (masked mRNA).

Pengaturan umur mRNA juga dijumpai pada telur yang belum dibuahi. Sel telur ini akan mempertahankan diri untuk tidak mengalami pertumbuhan atau perkembangan. Dengan demikian, laju sintesis protein menjadi sangat rendah. Namun, hal ini bukan akibat kurangnya pasokan mRNA, melainkan karena terbatasnya ketersediaan suatu unsur yang dinamakan faktor rekrutmen. Hingga kini belum diketahui hakekat unsur tersebut, tetapi rupanya berperan dalam pembentukan kompleks ribosom-mRNA.

Sintesis beberapa protein tertentu diatur oleh aktivitas protein itu sendiri terhadap mRNA. Sebagai contoh, konsentrasi suatu jenis molekul antibodi dipertahankan konstan oleh mekanisme inhibisi atau penghambatan diri dalam proses translasi. Jadi, molekul antibodi tersebut berikatan secara khusus dengan molekul mRNA yang menyandinya sehingga inisiasi translasi akan terhambat.

Sintesis beberapa protein dari satu segmen DNA

Pada prokariot terdapat mRNA polisistronik yang menyandi semua produk gen. Sebaliknya, pada eukariot tidak pernah dijumpai mRNA polisistronik, tetapi ada kondisi yang dapat disetarakan dengannya, yakni sintesis poliprotein. Poliprotein adalah polipeptida berukuran besar yang setelah berakhirnya translasi akan terpotong-potong untuk menghasilkan sejumlah molekul protein yang utuh. Tiap protein ini dapat dilihat sebagai produk satu gen tunggal.

Dalam sistem semacam itu urutan penyandi pada masing-masing gen tidak saling dipisahkan oleh kodon stop dan kodon awal, tetapi dipisahkan oleh urutan asam amino tertentu yang dikenal sebagai tempat pemotongan (cleavage sites) oleh enzim protease tertentu. Tempat-tempat pemotongan ini tidak akan berfungsi serempak, tetapi bergantian mengikuti suatu urutan.

 

 

11/01/2009 Posted by | Genetika Dasar | Tinggalkan komentar

MATERI GENETIK

 

BAB IX

MATERI GENETIK

  • Pembuktian DNA sebagai Materi Genetik
  • Pembuktian RNA sebagai Materi Genetik pada Virus Tertentu
  • Model Struktur Molekul DNA menurut Watson-Crick
  • Tiga Fungsi Materi Genetik
  • Replikasi Semi Konservatif
  • Replikasi Θ dan Replikasi Lingkaran Menggulung

BAB IX. MATERI GENETIK

Pada tahun 1868 seorang mahasiswa kedokteran di Swedia, J.F. Miescher, menemukan suatu zat kimia bersifat asam yang banyak mengandung nitrogen dan fosfor. Zat ini diisolasi dari nukleus sel nanah manusia dan kemudian dikenal dengan nama nuklein atau asam nukleat. Meskipun ternyata asam nukleat selalu dapat diisolasi dari nukleus berbagai macam sel, waktu itu fungsinya sama sekali belum diketahui.

Dari hasil analisis kimia yang dilakukan sekitar empat puluh tahun kemudian ditemukan bahwa asam nukleat ada dua macam, yaitu asam deoksiribonukleat atau deoxyribonucleic acid (DNA) dan asam ribonukleat atau ribonucleic acid (RNA).  Pada tahun 1924 studi mikroskopis menunjukkan bahwa DNA terdapat di dalam kromosom, yang waktu itu telah diketahui sebagai organel pembawa gen (materi genetik). Akan tetapi, selain DNA di dalam kromosom juga terdapat protein sehingga muncul perbedaan pendapat mengenai hakekat materi genetik, DNA atau protein.

Dugaan DNA sebagai materi genetik secara tidak langsung sebenarnya dapat dibuktikan dari kenyataan bahwa hampir semua sel somatis pada spesies tertentu mempunyai kandungan DNA yang selalu tetap, sedangkan kandungan RNA dan proteinnya berbeda-beda antara satu sel dan sel yang lain. Di samping itu, nukleus hasil meiosis baik pada tumbuhan maupun hewan mempunyai kandungan DNA separuh kandungan DNA di dalam nukleus sel somatisnya.

Meskipun demikian, dalam kurun waktu yang cukup lama fakta semacam itu tidak cukup kuat untuk meyakinkan bahwa DNA adalah materi genetik. Hal ini terutama karena dari hasil analisis kimia secara kasar terlihat kurangnya variasi kimia pada molekul DNA. Di sisi lain, protein dengan variasi kimia yang tinggi sangat memenuhi syarat sebagai materi genetik. Oleh karena itu, selama bertahun-tahun protein lebih diyakini sebagai materi genetik, sementara DNA hanya merupakan kerangka struktur kromosom. Namun, pada pertengahan tahun 1940-an terbukti bahwa justru DNA-lah yang merupakan materi genetik pada sebagian besar organisme.

DNA sebagai Materi Genetik

Ada dua bukti percobaan yang menunjukkan bahwa DNA adalah materi genetik. Masing-masing akan diuraikan berikut ini.

Percobaan transformasi

F. Griffith pada tahun 1928 melakukan percobaan infeksi bakteri pneumokokus (Streptococcus pneumonia) pada mencit. Bakteri penyebab penyakit pneumonia ini dapat menyintesis kapsul polisakarida yang akan melindunginya dari mekanisme pertahanan tubuh hewan yang terinfeksi sehingga bersifat virulen (menimbulkan penyakit). Jika ditumbuhkan pada medium padat, bakteri pneumokokus akan membentuk koloni dengan kenampakan halus mengkilap. Sementara itu, ada pula strain mutan pneumokokus yang kehilangan kemampuan untuk menyintesis kapsul polisakarida sehingga menjadi tidak tahan terhadap sistem kekebalan tubuh hewan inangnya, dan akibatnya tidak bersifat virulen. Strain mutan ini akan membentuk koloni dengan kenampakan kasar apabila ditumbuhkan pada medium padat. Pneumokokus yang virulen sering dilambangkan dengan S, sedangkan strain mutannya yang tidak virulen dilambangkan dengan R.

Mencit yang diinfeksi dengan pneumokokus S akan mengalami kematian, dan dari organ paru-parunya dapat diisolasi strain S tersebut. Sebaliknya, mencit yang diinfeksi dengan strain R dapat bertahan hidup. Demikian juga, mencit yang diinfeksi dengan strain S yang sebelumnya telah dipanaskan terlebih dahulu akan dapat bertahan hidup. Hasil yang mengundang pertanyaan adalah ketika mencit diinfeksi dengan campuran antara strain S yang telah dipanaskan dan strain R yang masih hidup. Ternyata dengan perlakuan ini mencit mengalami kematian, dan dari organ paru-parunya dapat diisolasi strain S yang masih hidup.

Dengan hasil tersebut Griffith menyimpulkan bahwa telah terjadi perubahan (transformasi) sifat strain R menjadi S.  Transformasi terjadi karena ada sesuatu yang dipindahkan dari sel-sel strain S yang telah mati (dipanaskan) ke strain R yang masih hidup sehingga strain R yang semula tidak dapat membentuk kapsul berubah menjadi strain S yang dapat membentuk kapsul dan bersifat virulen.

Percobaan Griffith sedikit pun tidak memberikan bukti tentang materi genetik. Namun, pada tahun 1944 tiga orang peneliti, yakni O. Avery, C. MacLeod, dan M. McCarty melakukan percobaan untuk mengetahui hakekat materi yang dipindahkan dari strain S ke strain R.

Mereka melakukan percobaan transformasi secara in vitro, yaitu dengan menambahkan ekstrak DNA dari strain S yang telah mati kepada strain R yang ditumbuhkan di medium padat. Di dalam ekstrak DNA ini terdapat juga sejumlah protein kontaminan, dan penambahan tersebut ternyata menyebabkan strain R berubah menjadi S seperti pada percobaan Griffith.  Jika pada percobaan Avery dan kawan-kawannya itu ditambahkan enzim RNase (pemecah RNA) atau enzim protease (pemecah protein), transformasi tetap berjalan atau strain R berubah juga menjadi S.  Akan tetapi, jika enzim yang diberikan adalah DNase (pemecah DNA), maka transformasi tidak terjadi. Artinya, strain R tidak berubah menjadi strain S.  Hal ini jelas membuktikan bahwa materi yang bertanggung jawab atas terjadinya transformasi pada bakteri pneumonia, dan ternyata juga pada hampir semua organisme, adalah DNA, bukan RNA atau protein.

 

kultur strain S

ekstraksi DNA

ekstrak DNA + protein kontaminan

ditambahkan ke kultur strain R

protease                                  RNase                                   DNase

kultur                                      kultur                                    kultur

strain R                                   strain R                                 strain R

 

strain R + S                            strain R + S                           strain R

 

Gambar 9.1. Diagram percobaan transformasi yang

membuktikan DNA sebagai materi genetik

Percobaan infeksi bakteriofag

Percobaan lain yang membuktikan bahwa DNA adalah materi genetik dilaporkan pada tahun 1952 oleh A. Hershey dan M. Chase. Percobaan dilakukan dengan mengamati reproduksi bakteriofag (virus yang menyerang bakteri) T2 di dalam sel bakteri inangnya, yaitu Escherichia coli.  Sebelumnya, cara berlangsungnya infeksi T2 pada E. coli telah diketahui (lihat Bab XII). Mula-mula partikel T2 melekatkan ujung ekornya pada dinding sel E. coli, diikuti oleh masuknya materi genetik T2 ke dalam sel E. coli sehingga memungkinkan terjadinya penggandaan partikel T2 di dalam sel inangnya itu. Ketika hasil penggandaan partikel T2 telah mencapai jumlah yang sangat besar, sel E. coli akan mengalami lisis. Akhirnya, partikel-partikel T2 yang keluar akan mencari sel inang yang baru, dan siklus reproduksi tadi akan terulang kembali.

Bakteriofag T2 diketahui mempunyai kandungan protein dan DNA dalam jumlah yang lebih kurang sama. Untuk memastikan sifat kimia materi genetik yang dimasukkan ke dalam sel inang dilakukan pelabelan terhadap molekul protein dan DNAnya.  Protein, yang umumnya banyak mengandung sulfur tetapi tidak mengandung fosfor dilabeli dengan radioisotop 35S.  Sebaliknya, DNA yang sangat banyak mengandung fosfor tetapi tidak mengandung sulfur dilabeli dengan radioisotop 32P.

materi genetik masuk

dilabeli dengan 35S dan 32P                             ke sel inang

banyak

didapatkan 35S

 

sel inang lisis

banyak

didapatkan 32P

 

Gambar 9.2. Daur hidup bakteriofag T2 dan diagram percobaan infeksi T2 pada E. coli yang membuktikan DNA sebagai materi genetik

Bakteriofag T2 dengan protein yang telah dilabeli diinfeksikan pada E. coli.  Dengan sentrifugasi, sel-sel E. coli ini kemudian dipisahkan dari partikel-partikel T2 yang sudah tidak melekat lagi pada dinding selnya. Ternyata di dalam sel-sel E. coli sangat sedikit ditemukan radioisotop 35S, sedangkan pada partikel-partikel T2 masih banyak didapatkan radioisotop tersebut. Apabila dengan cara yang sama digunakan bakteriofag T2 yang dilabeli DNAnya, maka di dalam sel-sel E. coli ditemukan banyak sekali radiosiotop 32P, sedangkan pada partikel-partikel T2 hanya ada sedikit sekali radioisotop tersebut. Hasil percobaan ini jelas menunjukkan bahwa materi genetik yang dimasukkan oleh bakteriofag T2 ke dalam sel E. coli adalah materi yang dilabeli dengan 32P atau DNA, bukannya protein.

RNA sebagai Materi Genetik pada Beberapa Virus

Beberapa virus tertentu diketahui tidak mempunyai DNA, tetapi hanya tersusun dari RNA dan protein. Untuk memastikan di antara kedua makromolekul tersebut yang berperan sebagai materi genetik, antara lain telah dilakukan percobaan rekonstitusi yang dilaporkan oleh H. Fraenkel-Conrat dan B. Singer pada tahun 1957.

Mereka melakukan penelitian pada virus mozaik tembakau atau tobacco mozaic virus (TMV), yaitu virus yang menyebabkan timbulnya penyakit mozaik pada daun tembakau. Virus ini mengandung molekul RNA yang terbungkus di dalam selubung protein. Dengan perlakuan kimia tertentu molekul RNA dapat dipisahkan dari selubung proteinnya untuk kemudian digabungkan (direkonstitusi) dengan selubung protein dari strain TMV yang lain.

protein

RNA

pemisahan                   rekonstitusi       infeksi ke daun

RNA dari                                                  tembakau

protein

Gambar 9.3. Percobaan yang membuktikan RNA sebagai materi genetik pada TMV

= TMV strain A                                   = TMV strain B

RNA dari strain A direkonstitusi dengan protein strain B. Sebaliknya, RNA dari strain B direkonstitusi dengan protein dari strain A. Kedua TMV hasil rekonstitusi ini kemudian diinfeksikan ke inangnya (daun tembakau) agar mengalami penggandaan. TMV hasil penggandaan ternyata merupakan strain A jika RNAnya berasal dari strain A dan merupakan strain B jika RNAnya berasal dari strain B. Jadi, faktor yang menentukan strain hasil penggandaan adalah RNA, bukan protein. Oleh karena itu, dapat disimpulkan bahwa materi genetik pada virus-virus yang tidak mempunyai DNA, seperti halnya TMV, adalah RNA.

Komposisi Kimia Asam Nukleat

Hasil analisis kimia asam nukleat menunjukkan bahwa makromolekul ini tersusun dari subunit-subunit berulang (monomer) yang disebut nukleotida sehingga asam nukleat dapat juga dikatakan sebagai polinukleotida. Nukleotida yang satu dengan nukleotida berikutnya dihubungkan oleh ikatan fosfodiester yang sangat kuat. Tiap nukleotida terdiri atas tiga komponen, yaitu gugus fosfat, gula pentosa (gula dengan lima atom karbon), dan basa nukleotida atau basa nitrogen (basa siklik yang mengandung nitrogen). Pada DNA basa nitrogen berikatan secara kimia dengan gula pentosa membentuk molekul yang disebut nukleosida sehingga setiap nukleotida pada DNA dapat disebut juga sebagai nukleosida monofosfat.

Gula pentosa pada DNA adalah 2-deoksiribosa, sedangkan pada RNA adalah ribosa. Menurut kebiasaan, penomoran atom C pada gula pentosa dilakukan menggunakan tanda aksen (’) untuk membedakannya dengan penomoran atom C pada basa nitrogen. Atom C pada gula pentosa yang berikatan dengan basa nitrogen ditentukan sebagai atom C pertama (1’).  Atom C nomor 2’ pada DNA tidak mengikat gugus OH seperti halnya pada RNA, tetapi mengikat gugus H sehingga gula pentosanya dinamakan deoksiribosa.

Sementara tu, basa nitrogen ada dua macam, yakni basa dengan cincin rangkap atau disebut purin dan basa dengan cincin tunggal atau disebut pirimidin. Basa purin, baik pada DNA maupun RNA, dapat berupa adenin (A) atau guanin (G), sedangkan basa pirimidin pada DNA dapat berupa sitosin (C) atau timin (T). Pada RNA tidak terdapat basa timin, tetapi diganti dengan urasil (U).

Biasanya DNA mempunyai struktur sebagai molekul polinukleotida untai ganda, sedangkan RNA adalah polinukleotida untai tunggal. Ini merupakan perbedaan lain di antara kedua macam asam nukleat tersebut.

O

 

O       P = O       gugus fosfat

O

 

 

5’CH2OH         O                                5’CH2OH        O

OH                                                      OH

4’                                   1’                  4’                                    1’

H      H                         H      H            H      H                        H      H

3’                    2’                                 3’                    2’

 

OH                      H OH                     OH

gula 2-deoksiribosa                                    gula ribosa

 

 

 

NH2 O

 

N                                                                    N

N     6   5            7        8    H                    H    N     6  5            7        8     H

1                                                                       1

H    2         4                      9                       NH2 2         4                      9

3                        N      H                                  3                         N     H

N                                                                     N

adenin                                                              guanin

 

 

 

NH2                                    O                                             O

4                                         4                                              4

N3        5    H               H      N3       5    CH3              H      N3       5    H

 

2     1  6    H                         2    1   6     H                           2     1  6     H

O          NH                         O          NH                              O          NH

sitosin                                   timin                                         urasil

 

Gambar 9.4. Komponen kimia asam nukleat

Model Struktur DNA Watson-Crick

Model struktur fisik molekul DNA pertama kali diajukan pada tahun 1953 oleh J.D. Watson dan F.H.C. Crick. Ada dua dasar yang digunakan dalam melakukan deduksi terhadap model tersebut, yaitu

  1. Hasil analisis kimia yang dilakukan oleh E. Chargaff terhadap kandungan basa nitrogen molekul DNA dari berbagai organisme selalu menunjukkan bahwa konsentrasi adenin sama dengan timin, sedangkan guanin sama dengan sitosin. Dengan sendirinya, konsentrasi basa purin total menjadi sama dengan konsentrasi basa pirimidin total. Akan tetapi, nisbah konsentrasi adenin + timin terhadap konsentrasi guanin + sitosin sangat bervariasi dari spesies ke spesies.
  2. Pola difraksi yang diperoleh dari hasil pemotretan molekul DNA menggunakan sinar X oleh M.H.F. Wilkins, R. Franklin, dan para koleganya menunjukkan bahwa basa-basa nitrogen tersusun vertikal di sepanjang sumbu molekul dengan interval 3,4 Å.

Dari data kimia Chargaff serta difraksi sinar X Wilkins dan Franklin tersebut Watson dan Crick mengusulkan model struktur DNA yang dikenal sebagai model tangga berpilin (double helix). Menurut model ini kedua untai polinukleotida saling memilin di sepanjang sumbu yang sama. Satu sama lain arahnya sejajar tetapi berlawanan (antiparalel). Basa-basa nitrogen menghadap ke arah dalam sumbu, dan terjadi ikatan hidrogen antara basa A pada satu untai dan basa T pada untai lainnya. Begitu pula, basa G pada satu untai selalu berpasangan dengan basa C pada untai lainnya melalui ikatan hidrogen. Oleh karena itu, begitu urutan basa pada satu untai polinukleotida diketahui, maka urutan basa pada untai lainnya dapat ditentukan pula. Adanya perpasangan yang khas di antara basa-basa nitrogen itu menyebabkan kedua untai polinukleotida komplementer satu sama lain.

Setiap pasangan basa berjarak 3,4 Å dengan pasangan basa berikutnya. Di dalam satu kali pilinan (360°) terdapat 10 pasangan basa. Antara basa A dan T yang berpasangan terdapat ikatan hidrogen rangkap dua, sedangkan antara basa G dan C yang berpasangan terdapat ikatan hidrogen rangkap tiga. Hal ini menyebabkan nisbah A+T terhadap G+C mempengaruhi stabilitas molekul DNA. Makin tinggi nisbah tersebut, makin rendah stabilitas molekul DNAnya, dan begitu pula sebaliknya.

Gugus fosfat dan gula terletak di sebelah luar sumbu. Seperti telah disebutkan di atas, nukleotida-nukleotida yang berurutan dihubungkan oleh ikatan fosfodiester. Ikatan ini menghubungkan atom C nomor 3’ dengan atom C nomor 5’ pada gula deoksiribosa. Di salah satu ujung untai polinukleotida, atom C nomor 3’ tidak lagi dihubungkan oleh ikatan fosfodiester dengan nukleotida berikutnya, tetapi akan mengikat gugus OH. Oleh karena itu, ujung ini dinamakan ujung 3’ atau ujung OH. Di ujung lainnya atom C nomor 5’ akan mengikat gugus fosfat sehingga ujung ini dinamakan ujung 5’ atau ujung P. Kedudukan antiparalel di antara kedua untai polinukleotida sebenarnya dilihat dari ujung-ujung ini. Jika untai yang satu mempunyai arah dari ujung 5’ ke 3’, maka untai komplementernya mempunyai arah dari ujung 3’ ke 5’.

OH(3’)

P(5’)

 

P

 

P

 

P

 

P

 

P

 

P

 

P

 

P

 

P(5’)

 

OH(3’)            Gambar 9.5 Diagram struktur molekul DNA

= gula           = adenin        = timin          = guanin       = sitosin

Fungsi Materi Genetik

Setelah terbukti bahwa DNA merupakan materi genetik pada sebagian besar organisme, kita akan melihat fungsi yang harus dapat dilaksanakan oleh molekul tersebut sebagai materi genetik. Dalam beberapa dasawarsa pertama semenjak gen dikemukakan sebagai faktor yang diwariskan dari generasi ke generasi, sifat-sifat molekulernya baru sedikit sekali terungkap. Meskipun demikan, ketika itu telah disepakati bahwa gen sebagai materi genetik, yang sekarang ternyata adalah DNA, harus dapat menjalankan tiga fungsi pokok berikut ini.

  1. Materi genetik harus mampu menyimpan informasi genetik dan dengan tepat dapat meneruskan informasi tersebut dari tetua kepada keturunannya, dari generasi ke generasi. Fungsi ini merupakan fungsi genotipik, yang dilaksanakan melalui replikasi. Bagian setelah ini akan membahas replikasi DNA.
  2. Materi genetik harus mengatur perkembangan fenotipe organisme. Artinya, materi genetik harus mengarahkan pertumbuhan dan diferensiasi organisme mulai dari zigot hingga individu dewasa. Fungsi ini merupakan fungsi fenotipik, yang dilaksanakan melalui ekspresi gen (Bab X).
  3. Materi genetik sewaktu-waktu harus dapat mengalami perubahan sehingga organisme yang bersangkutan akan mampu beradaptasi dengan kondisi lingkungan yang berubah. Tanpa perubahan semacam ini, evolusi tidak akan pernah berlangsung. Fungsi ini merupakan fungsi evolusioner, yang dilaksanakan melalui peristiwa mutasi (Bab XI).

Replikasi DNA

Ada tiga cara teoretis replikasi DNA yang pernah diusulkan, yaitu konservatif, semikonservatif, dan dispersif. Pada replikasi konservatif seluruh tangga berpilin DNA awal tetap dipertahankan dan akan mengarahkan pembentukan tangga berpilin baru. Pada replikasi semikonservatif tangga berpilin mengalami pembukaan terlebih dahulu sehingga kedua untai polinukleotida akan saling terpisah. Namun, masing-masing untai ini tetap dipertahankan dan akan bertindak sebagai cetakan (template) bagi pembentukan untai polinukleotida baru. Sementara itu, pada replikasi dispersif kedua untai polinukleotida mengalami fragmentasi di sejumlah tempat. Kemudian, fragmen-fragmen polinukleotida yang terbentuk akan menjadi cetakan bagi fragmen nukleotida baru sehingga fragmen lama dan baru akan dijumpai berselang-seling di dalam tangga berpilin yang baru.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

konservatif                        semikonservatif                            dispersif

Gambar 9.6. Tiga cara teoretis replikasi DNA

= untai lama            = untai baru

 

Di antara ketiga cara replikasi DNA yang diusulkan tersebut, hanya cara semikonservatif yang dapat dibuktikan kebenarannya melalui percobaan yang dikenal dengan nama sentrifugasi seimbang dalam tingkat kerapatan atau equilibrium density-gradient centrifugation. Percobaan ini dilaporkan hasilnya pada tahun 1958 oleh M.S. Meselson dan F.W. Stahl.

Mereka menumbuhkan bakteri Escherichia coli selama beberapa generasi di dalam medium yang mengandung isotop nitrogen 15N untuk menggantikan isotop nitrogen normal 14N yang lebih ringan. Akibatnya, basa-basa nitrogen pada molekul DNA sel-sel bakteri tersebut akan memiliki 15N yang berat. Molekul DNA dengan basa nitrogen yang mengandung 15N mempunyai tingkat kerapatan (berat per satuan volume) yang lebih tinggi daripada DNA normal (14N). Oleh karena molekul-molekul dengan tingkat kerapatan yang berbeda dapat dipisahkan dengan cara sentrifugasi tersebut di atas, maka Meselson dan Stahl dapat mengikuti perubahan tingkat kerapatan DNA sel-sel bakteri E. coli yang semula ditumbuhkan pada medium 15N selama beberapa generasi, kemudian dikembalikan ke medium normal 14N selama beberapa generasi berikutnya.

Molekul DNA mempunyai kerapatan yang lebih kurang sama dengan kerapatan larutan garam yang sangat pekat seperti larutan 6M CsCl (sesium khlorida).  Sebagai perbandingan, kerapatan DNA E.coli dengan basa nitrogen yang mengandung isotop 14N dan 15N masing-masing adalah 1,708 g/cm3 dan 1,724 g/cm3, sedangkan kerapatan larutan 6M CsCl adalah 1,700 g/cm3.

Ketika larutan 6M CsCl yang di dalamnya terdapat molekul DNA disentrifugasi dengan kecepatan sangat tinggi, katakanlah 30.000 hingga 50.000 rpm, dalam waktu 48 hingga 72 jam, maka akan terjadi keseimbangan tingkat kerapatan. Hal ini karena molekul-molekul garam tersebut akan mengendap ke dasar tabung sentrifuga akibat adanya gaya sentrifugal, sementara di sisi lain difusi akan menggerakkan molekul-molekul garam kembali ke atas tabung. Molekul DNA dengan tingkat kerapatan tertentu akan menempati kedudukan yang sama dengan kedudukan larutan garam yang tingkat kerapatannya sama dengannya.

DNA yang diekstrak dari sel E. coli yang ditumbuhkan pada medium 15N terlihat  menempati dasar tabung. Selanjutnya, DNA yang diekstrak dari sel E.coli yang pertama kali dipindahkan kembali ke medium 14N terlihat menempati bagian tengah tabung. Pada generasi kedua setelah E.coli ditumbuhkan pada medium 14N ternyata DNAnya menempati bagian tengah dan atas tabung. Ketika E.coli telah ditumbuhkan selama beberapa generasi pada medium 14N, DNAnya nampak makin banyak berada di bagian atas tabung, sedangkan DNA yang berada di bagian tengah tabung tetap. Meselson dan Stahl menjelaskan bahwa pada generasi 15N, atau dianggap sebagai generasi 0, DNAnya mempunyai kerapatan tinggi. Kemudian, pada generasi 14N yang pertama, atau disebut sebagai generasi 1, DNAnya merupakan hibrid antara DNA dengan kerapatan tinggi dan rendah. Pada generasi 2 DNA hibridnya masih ada, tetapi muncul pula DNA baru dengan kerapatan rendah. Demikian seterusnya, DNA hibrid akan tetap jumlahnya, sedangkan DNA baru dengan kerapatan rendah akan makin banyak dijumpai. Pada Gambar 9.7 terlihat bahwa interpretasi data hasil percobaan sentrifugasi ini jelas sejalan dengan cara pembentukan molekul DNA melalui replikasi semikonservatif.

 

 

 

 

 

medium 15N     ekstrak DNA

(generasi 0)

 

 

 

 

ekstrak DNA

medium 14N        (generasi 1)

 

 

 

 

ekstrak DNA

(generasi 2)

medium 14N

 

 

 

 

ekstrak DNA

medium 14N       (generasi 3)

interpretasi data hasil sentrifugasi DNA

Gambar 9.7. Diagram percobaan Meselson dan Stahl yang memperlihatkan

replikasi DNA secara semikonservatif

 

Pada percobaan Meselson dan Stahl ekstrak DNA yang diperoleh dari sel-sel E. coli berada dalam keadaan terfragmentasi sehingga replikasi molekul DNA dalam bentuknya yang utuh sebenarnya belum diketahui. Replikasi DNA kromosom dalam keadaan utuh _ yang pada prokariot ternyata berbentuk melingkar atau sirkular _ baru dapat diamati menggunakan teknik autoradiografi dan mikroskopi elektron. Dengan kedua teknik ini terlihat bahwa DNA berbagai virus, khloroplas, dan mitokhondria melakukan replikasi yang dikenal sebagai replikasi θ (theta) karena autoradiogramnya menghasilkan gambaran seperti huruf Yunani tersebut. Selain replikasi θ, pada sejumlah bakteri dan organisme eukariot dikenal pula replikasi yang dinamakan replikasi lingkaran menggulung (rolling circle replication). Replikasi ini diawali dengan pemotongan ikatan fosfodiester pada daerah tertentu yang menghasilkan ujung 3’ dan ujung 5’. Pembentukan (sintesis) untai DNA baru terjadi dengan penambahan deoksinukleotida pada ujung 3’ yang diikuti oleh pelepasan ujung 5’ dari lingkaran molekul DNA. Sejalan dengan berlangsungnya replikasi di seputar lingkaran DNA, ujung 5’ akan makin terlepas dari lingkaran tersebut sehingga membentuk ’ekor’ yang makin memanjang (Gambar 9.8).

 

 

penambahan

nukleotida

ujung 3’

tempat ujung 5’ pelepasan ujung 5’    pemanjangan ’ekor’

terpotongnya ikatan fosfodiester

Gambar 9.8. Replikasi lingkaran menggulung

= untai lama            = untai baru

 

Dimulainya (inisiasi) replikasi DNA terjadi di suatu tempat tertentu di dalam lingkaran molekul DNA yang dinamakan titik awal replikasi atau origin of replication (ori). Proses inisiasi ini ditandai oleh saling memisahnya kedua untai DNA, yang masing-masing akan berperan sebagai cetakan bagi pembentukan untai DNA baru sehingga akan diperoleh suatu gambaran yang disebut sebagai garpu replikasi. Biasanya, inisiasi replikasi DNA, baik pada prokariot maupun eukariot, terjadi dua arah (bidireksional). Dalam hal ini dua garpu replikasi akan bergerak melebar dari ori menuju dua arah yang berlawanan. Pada eukariot, selain terjadi replikasi dua arah, ori dapat ditemukan di beberapa tempat.

Enzim-enzim yang berperan dalam replikasi DNA

Replikasi DNA, atau sintesis DNA, melibatkan sejumlah reaksi kimia yang diatur oleh beberapa enzim. Salah satu diantaranya adalah enzim DNA polimerase, yang mengatur pembentukan ikatan fosfodiester antara dua nukleotida yang berdekatan sehingga akan terjadi pemanjangan untai DNA (polinukleotida).

Agar DNA polimerase dapat bekerja mengatalisis reaksi sintesis DNA, diperlukan tiga komponen reaksi, yaitu

  1. Deoksinukleosida trifosfat, yang terdiri atas deoksiadenosin trifosfat (dATP), deoksiguanosin trifosfat (dGTP), deoksisitidin trifosfat (dCTP), dan deoksitimidin trifosfat (dTTP). Keempat molekul ini berfungsi sebagai sumber basa nukleotida.
    1. Untai DNA yang akan digunakan sebagai cetakan (template).
    2. Segmen asam nukleat pendek, dapat berupa DNA atau RNA, yang mempunyai gugus 3’- OH bebas. Molekul yang dinamakan primer ini diperlukan karena tidak ada enzim DNA polimerase yang diketahui mampu melakukan inisiasi sintesis DNA.

Reaksi sintesis DNA secara skema dapat dilihat pada Gambar 9.9. Dalam gambar tersebut sebuah molekul dGTP ditambahkan ke molekul primer yang terdiri atas tiga nukleotida (A-C-A). Penambahan dGTP terjadi karena untai DNA cetakannya mempunyai urutan basa T-G-T-C- . . . . .  Hasil penambahan yang diperoleh adalah molekul DNA yang terdiri atas empat nukleotida (A-C-A-G).  Dua buah atom fosfat (PPi) dilepaskan dari dGTP karena sebuah atom fosfatnya diberikan ke primer dalam bentuk nukleotida dengan basa G atau deoksinukleosida monofosfat (dGMP).  Kita lihat bahwa sintesis DNA (penambahan basa demi basa) berlangsung dari ujung 5’ ke ujung 3’.

T         G         T        C . . . . .   DNA cetakan T         G          T         C . . . . . .

A         C         A                                                   A         C          A         G

dGTP                PPi

3’         3’         3’                                                   3’        3’         3’         3’

P              P         P          OH    DNA polimerase P            P          P          P          OH

5’         5’         5’                      Mg2+ 5’         5’        5’         5’

Gambar 9.9. Skema reaksi sintesis DNA

Enzim DNA polimerase yang diperlukan untuk sintesis DNA pada E. coli ada dua macam, yaitu DNA polimerase I (Pol I) dan DNA polimerase III (Pol III). Dalam sintesis DNA, Pol III merupakan enzim replikasi yang utama, sedangkan enzim Pol I memegang peran sekunder.  Sementara itu, enzim DNA polimerase untuk sintesis DNA kromosom pada eukariot disebut polimerase α.

Selain mampu melakukan pemanjangan atau polimerisasi DNA, sebagian besar enzim DNA polimerase mempunyai aktivitas nuklease, yaitu pembuangan molekul nukleotida dari untai polinukleotida. Aktivitas nuklease dapat dibedakan menjadi (1) eksonuklease atau pembuangan nukleotida dari ujung polinukleotida dan (2) endonuklease atau pemotongan ikatan fosfodiester di dalam untai polinukleotida.

Enzim Pol I dan Pol III dari E. coli mempunyai aktivitas eksonuklease yang hanya bekerja pada ujung 3’.  Artinya, pemotongan terjadi dari ujung 3’ ke arah ujung 5’. Hal ini bermanfaat untuk memperbaiki kesalahan sintesis DNA atau kesalahan penambahan basa, yang bisa saja terjadi meskipun sangat jarang (sekitar satu di antara sejuta basa !).  Kesalahan penambahan basa pada untai polinukleotida yang sedang tumbuh (dipolimerisasi) menjadikan basa-basa salah berpasangan, misalnya A dengan C. Fungsi perbaikan kesalahan yang dijalankan oleh enzim Pol I dan III tersebut dinamakan fungsi penyuntingan (proofreading). Khusus enzim Pol I ternyata juga mempunyai aktivitas eksonuklease 5’→ 3’ di samping aktivitas eksonuklease 3’→5’ (lihat juga Bab XI).

Enzim lain yang berperan dalam proses sintesis DNA adalah primase. Enzim ini bekerja pada tahap inisiasi dengan cara mengatur pembentukan molekul primer di daerah ori. Setelah primer terbentuk barulah DNA polimerase melakukan elongasi atau pemanjangan untai DNA.

Tahap inisiasi sintesis DNA juga melibatkan enzim DNA girase dan protein yang mendestabilkan pilinan (helix destabilizing protein).  Kedua enzim ini berperan dalam pembukaan pilinan di antara kedua untai DNA sehingga kedua untai tersebut dapat saling memisah.

Pada bagian berikut ini akan dijelaskan bahwa sintesis DNA baru tidak hanya terjadi pada salah satu untai DNA, tetapi pada kedua-duanya. Hanya saja sintesis DNA pada salah satu untai berlangsung tidak kontinyu sehingga menghasilkan fragmen yang terputus-putus.  Untuk menyambung fragmen-fragmen ini diperlukan enzim yang disebut DNA ligase.

Replikasi pada kedua untai DNA

Proses replikasi DNA yang kita bicarakan di atas sebenarnya barulah proses yang terjadi pada salah satu untai DNA. Untai DNA tersebut sering dinamakan untai pengarah (leading strand).  Sintesis DNA baru pada untai pengarah ini berlangsung secara kontinyu dari ujung 5’ ke ujung 3’ atau bergerak di sepanjang untai pengarah dari ujung 3’ ke ujung 5’.

Pada untai DNA pasangannya ternyata juga terjadi sintesis DNA baru dari ujung 5’ ke ujung 3’ atau bergerak di sepanjang untai DNA cetakannya ini dari ujung 3’ ke ujung 5’.  Namun, sintesis DNA pada untai yang satu ini tidak berjalan kontinyu sehingga menghasilkan fragmen terputus-putus, yang masing-masing mempunyai arah 5’→ 3’.  Terjadinya sintesis DNA yang tidak kontinyu sebenarnya disebabkan oleh sifat enzim DNA polimerase yang hanya dapat menyintesis DNA dari arah 5’ ke 3’ serta ketidakmampuannya untuk melakukan inisiasi sintesis DNA.

Untai DNA yang menjadi cetakan bagi sintesis DNA tidak kontinyu itu disebut untai tertinggal (lagging strand). Sementara itu, fragmen-fragmen DNA yang dihasilkan dari sintesis yang tidak kontinyu dinamakan fragmen Okazaki, sesuai dengan nama penemunya. Seperti telah dikemukakan di atas, fragmen-fragmen Okazaki akan disatukan menjadi sebuah untai DNA yang utuh dengan bantuan enzim DNA ligase.

 

 

 

ori                                                             untai tertinggal

5’  3’  5’    3’ 5’

3’     fragmen-fragmen     3’     5’

3’                             5’              Okazaki

5’                                 3’                                5’    3’

untai baru kontinyu

untai pengarah

Gambar 9.10. Diagram replikasi pada kedua untai DNA

 

11/01/2009 Posted by | Genetika Dasar | 5 Komentar

Sterilitas Jantan pada Jagung

hingga dihasilkan delapan mikronuklei haploid, yang tujuh di antaranya akan mengalami degenerasi. Satu mikronukleus yang tersisa mengalami mitosis menjadi dua mikronuklei yang juga haploid. Selanjutnya, membran sel di tempat kedua sel berlekatan akan rusak sehingga terjadi pertukaran salah satu mironuklei antarsel, yang diikuti dengan fusi kedua mikronuklei menjadi satu mikronukleus diploid. Mulai tahap ini kedua sel (ekskonjugan) secara genetik menjadi sama.

Fase aseksual juga diawali dengan meiosis mikronuklei menjadi delapan mikronuklei haploid, yang tujuh di antaranya mengalami degenerasi. Satu mikronukleus yang tersisa mengalami mitosis menjadi dua mikronuklei haploid. Kedua mikronuklei ini bergabung membentuk satu mikronukleus diploid, yang kemudian mengalami dua kali mitosis menjadi empat mikronuklei diploid. Dua di antara mikronuklei ini berkembang menjadi makronuklei. Kedua mikronuklei yang tersisa mengalami mitosis menjadi empat mikronuklei diploid. Setelah terjadi sitokinesis (pemisahan sel) diperoleh dua buah sel masing-masing dengan dua mikronuklei dan satu makronukleus yang semuanya diploid. Hal yang perlu untuk diketahui pada fase aseksual ini adalah bahwa meskipun sel yang mengalami autogami pada awalnya heterozigot, sel-sel yang dihasilkan semuanya akan menjadi homozigot karena sel awal heterozigot tersebut terlebih dahulu mengalami meiosis menjadi sel haploid. Dengan demikian, peristiwa autogami pada hakekatnya sangat menyerupai pembuahan sendiri, khususnya dalam hal peningkatan homozigositas. Dari hasil autogami dapat dipelajari bahwa pewarisan suatu sifat diatur oleh gen-gen kromosomal ataukah sitoplasmik.

Pada strain tertentu Paramecium aurelia ditemukan adanya fenomena ‘pembunuh’ (killer) yang berkaitan dengan keberadaan sejumlah partikel yang disebut sebagai kappa di dalam sitoplasmanya. Keberadaan kappa bergantung kepada gen kromosomal dominan K. Beberapa peneliti, seperti T.M. Sonneborn, mengamati bahwa sel P. aurelia yang mengandung partikel-partikel kappa akan menghasilkan senyawa beracun yang dapat mematikan strain-strain protozoa lainnya yang ada di sekitarnya. Senyawa beracun ini selanjutnya disebut sebagai paramesin, sedangkan partikel-partikel kappa ternyata merupakan bakteri simbion yang kemudian dikenal dengan nama Caedobacter taeniospiralis, yang artinya bakteri pembunuh berbentuk pita spiral.

Apabila strain pembunuh melakukan konjugasi dengan strain bukan pembunuh (pada suatu kondisi yang memungkinkan strain bukan pembunuh untuk bertahan hidup), maka ada dua kemungkinan yang dapat terjadi. Pertama, kedua sel tidak bertukar materi sitoplasmik tetapi hanya bertukar mikronuklei (Gambar 8.5.a) sehingga diperoleh dua kelompok sel, yakni sel pembunuh dan sel bukan pembunuh yang kedua-duanya bergenotipe Kk. Jika masing-masing sel ini melakukan autogami, maka akan diperoleh sel pembunuh (KK) dan sel bukan pembunuh (kk) yang berasal dari sel pembunuh (Kk) serta sel bukan pembunuh (baik KK maupun kk) yang berasal dari sel bukan pembunuh (Kk). Jadi, genotipe KK dapat menghasilkan fenotipe bukan pembunuh jika di dalam sitoplasma tidak terdapat partikel kappa. Sebaliknya sel pembunuh (Kk) melalui autogami dapat menghasilkan sel bukan pembunuh (kk) karena partikel kappa tidak akan mampu bertahan di dalam sitoplasma tanpa adanya gen K. Dengan demikian, dari hasil tersebut tampak jelas bahwa sifat pembunuh atau bukan pembunuh ditentukan oleh ada tidaknya partikel kappa di dalam sitoplasma walaupun partikel itu sendiri keberadaannya bergantung kepada gen K di dalam nukleus.

Kemungkinan ke dua terjadi pertukaran materi sitoplasmik di antara kedua sel (Gambar 8.5 b) sehingga hanya diperoleh satu kelompok sel, yakni sel pembunuh yang bergenotipe Kk. Jika sel-sel ini melakukan autogami, maka akan diperoleh sel pembunuh (KK) dan sel bukan pembunuh (kk) dengan nisbah 1 : 1.

 

Sterilitas Jantan pada Jagung

Di bidang pertanian ada satu contoh fenomena pewarisan sitoplasmik yang sangat penting, yaitu sterilitas jantan sitoplasmik pada jagung. Tanaman jagung dikatakan steril atau mandul jantan sitoplasmik apabila tidak mampu menghasilkan polen yang aktif dalam jumlah normal sementara proses reproduksi dan fertilitas betinanya normal. Sterilitas jantan sitoplasmik tidak diatur oleh gen-gen kromosomal tetapi diwariskan melalui sitoplasma gamet betina dari generasi ke generasi. Jenis sterilitas ini telah banyak digunakan dalam produksi biji jagung hibrida.

Pola pewarisan sterilitas jantan pertama kali dipelajari oleh M. Rhoades melalui percobaan persilangan pada jagung, yang secara skema dapat dilihat pada Gambar 8.6. Individu mandul jantan sebagai tetua betina disilangkan dengan individu normal sebagai

11/01/2009 Posted by | Genetika Dasar | Tinggalkan komentar

Materi Genetik di dalam Kloroplas.

betina tersebut dinamakan mutan poki (poky mutant). Persilangan antara betina poki dan jantan tipe liar menghasilkan keturunan yang semuanya poki. Sebaliknya, persilangan antara betina tipe liar dan jantan poki menghasilkan keturunan yang semuanya normal.

Mutan poki menyerupai mutan petit pada S. cerevisae dalam hal pertumbuhannya yang lambat dan kerusakan fungsi mitokondrianya.  Secara biokimia kelainan ini berupa gangguan pada sistem sintesis protein mitokondria yang diatur oleh materi genetik di dalam mitokondria. Akibatnya, sel kehilangan kemampuan untuk membentuk protein yang diperlukan dalam metabolisme oksidatif. Seperti halnya mutan petit, mutan poki juga memperoleh energi untuk pertumbuhannya melalui jalur fermentasi anaerob yang sangat tidak efisien.

Materi Genetik di dalam Kloroplas.

Carl Correns pada tahun 1908 melihat adanya perbedaan hasil persilangan resiprok pada pewarisan warna bagian vegetatif tanaman, khususnya daun, pada beberapa tanaman tertentu seperti bunga pukul empat (Mirabilis jalapa). Dia mengamati bahwa pewarisan warna tersebut semata-mata ditentukan oleh tetua betina dan berkaitan dengan ada tidaknya kloroplas di dalam sitoplasma.

Suatu tanaman bunga pukul empat dapat memiliki bagian vegetatif yang berbeda-beda warnanya, yaitu hijau, putih, dan belang-belang hjau-putih (variegated). Sel-sel pada bagian yang berwarna hijau mempunyai kloroplas yang mengandung klorofil, sedang sel-sel pada bagian yang berwarna putih tidak mempunyai kloroplas tetapi berisi plastida yang tidak berwarna. Sementara itu, bagian yang belang-belang terdiri atas sel-sel, baik dengan maupun tanpa kloroplas. Ketiga macam bagian tanaman tersebut dapat menghasilkan bunga, baik sebagai sumber polen (tetua jantan) maupun sebagai pembawa putik (tetua betina), sehingga dimungkinkan adanya sembilan kombinasi persilangan, yang hasilnya dapat dilihat pada Tabel 8.1.

Jelas dapat disimpulkan dari Tabel 8.1 bahwa fenotipe keturunan akan selalu sama dengan fenotipe tetua betina atau terjadi pewarisan maternal. Hal ini karena seperti telah dikatakan di atas bahwa warna hijau bergantung kepada ada tidaknya kloroplas, sementara polen hanya sedikit sekali atau bahkan sama sekali tidak memiliki kloropas. Dengan demikian, kontribusi kloroplas kepada zigot dapat dipastikan hanya berasal dari sel kelamin betina. Model yang menjelaskan pewarisan maternal ini dapat dilihat pada Gambar 8.2.

Tabel 8.1 Hasil persilangan pada tanaman bunga pukul empat

Fenotipe cabang yang membawa bunga sebagai tetua betina Fenotipe cabang yang membawa bunga sebagai tetua jantan

Fenotipe keturunan

putih Putih putih
putih Hijau putih
putih belang-belang putih
hijau Putih hijau
hijau Hijau hijau
hijau belang-belang hijau
belang-belang Putih belang-belang, hijau, atau putih
belang-belang Hijau belang-belang, hijau, atau putih
belang-belang belang-belang belang-belang, hijau, atau putih

 

Penelitian tentang pewarisan sitoplasmik telah dilakukan pula pada alga uniseluler Chlamydomonas reinhardii, yakni mengenai pewarisan sifat ketahanan terhadap antibiotik. Sel alga ini memiliki sebuah kloroplas yang besar ukurannya dan di dalamya terdapat sejumlah materi genetik.

Ada dua macam sel pada Chlamydomonas bila dilihat dari tipe kawinnya, yakni mt + dan mt -. Kedua macam sel haploid ini dapat bergabung membentuk zigot diploid, yang selanjutnya akan mengalami meiosis untuk menghasilkan tetrad yang terdiri atas empat buah sel haploid. Oleh karena kedua sel tipe kawin tersebut ukurannya sama besar, maka kontribusi sitoplasma kepada zigot yang terbentuk akan sama banyaknya. Sel-sel haploid di dalam tetrad dapat ditumbuhkan pada medium selektif padat dan membentuk koloni yang menunjukkan genotipenya.

 

 

putih                  hijau                                   belang-belang

 

 

sel telur

 

 

 

 

x                        x                        x                         x                      x

polen

 

 

 

zigot

 

 

 

 

Gambar 8.2. Model pewarisan maternal pada tanaman bunga pukul empat

= plastida tanpa klorofil ;       = kloroplas

 

Persilangan resiprok antara tipe liar (rentan antibiotik) dan mutan-mutan yang tahan antibiotik memberikan hasil yang berbeda-beda. Sebagai contoh, persilangan antara tipe liar dan mutan yang tahan terhadap streptomisin menghasilkan keturunan yang sifat ketahanannya terhadap streptomisin bergantung kepada tetua mt+. Secara skema persilangan tersebut dapat digambarkan seperti pada Gambar 8.3.

Keturunan hasil persilangan antara kedua tipe kawin selalu mempunyai genotipe seperti salah satu tetuanya. Persilangan mt+ str+ dengan mt str - menghasilkan keturunan yang semuanya tahan streptomisin (str+) sementara persilangan mt+ str - dengan mt - str+ menghasilkan keturunan yang semuanya rentan streptomisin (str -) . Jadi, pewarisan sifat ketahanan terhadap streptomisin berlangsung uniparental atau bergantung kepada genotipe salah satu tetuanya, dalam hal ini mt+. Dengan perkataan lain, pewarisan alel str mengikuti pola pewarisan uniparental. Meskipun demikian, alel yang menentukan tipe kawin itu sendiri (alel mt) tampak bersegregasi mengikuti pola Mendel, yakni menghasilkan keturunan dengan nisbah 1 : 1, yang menunjukkan bahwa alel tersebut  terletak di dalam kromosom nukleus.

Berbagai penelitian mengenai ketahanan terhadap antibiotik selain streptomisin telah dilakukan pula pada Chlamydomonas, dan semuanya memperlihatkan terjadinya pewarisan uniparental. Analisis biokimia membuktikan bahwa sifat ketahanan terhadap antibiotik berhubungan dengan kloroplas. Seperti telah kita ketahui bahwa sel haploid Chlamydomonas hanya mempunyai sebuah kloroplas. Jika kloroplas ini berasal dari penggabungan kloroplas kedua sel tipe kawin yang digunakan sebagai tetua dengan nisbah yang sama, maka tidak mungkin terjadi pewarisan uniparental. Dengan demikian, kloroplas dapat dipastikan berasal dari salah satu tipe kawin saja. Hal ini didukung oleh penelitian menggunakan penanda fisik untuk membedakan kloroplas dari kedua tipe kawin yang telah menunjukkan bahwa setelah terjadi penggabungan, kloroplas dari mt akan hilang oleh suatu sebab yang hingga kini beluim diketahui. Jadi, kloroplas yang diwariskan hanya berasal dari tetua mt +. Oleh karena pewarisan sifat ketahanan terhadap antibiotik selalu ditentukan oleh tetua mt +, yang berarti sejalan dengan pola pewarisan kloroplas, maka sifat ini jelas dibawa oleh kloroplas. Dengan perkataan lain, pewarisan sifat ketahanan terhadap antibiotik pada Chlamydomonas merupakan pewarisan ekstrakromosomal atau pewarisan sitoplasmik.

 

 

 

mt+ str+ zigot mt str - mt+ str - zigot          mt str+

 

 

mt+ mt mt+ mt

mt+ mt mt+ mt

semuanya str+ semuanya str

 

 

mt+ str+ mt - str+ mt+str - mtstr

 

Gambar 8.3. Diagram pewarisan sifat ketahanan terhadap streptomisin pada

Chlamydomonas

(mt = tipe kawin ; str+ = tahan streptomisin ; str - =rentan

streptomisin)

 

11/01/2009 Posted by | Genetika Dasar | Tinggalkan komentar

   

Ikuti

Get every new post delivered to your Inbox.

Bergabunglah dengan 653 pengikut lainnya.